
Software User Manual
Firmware v2.1.x for all Ouster sensors

Ouster

Jun 17, 2021

Contents
1 Safety and Safe Use 6

1.1 Safety & Legal Notices . 6
1.2 Proper Assembly, Maintenance and Safe Use . 8

1.2.1 Assemblage correct et utilisation sûre . 9

2 Connecting to Sensor 10
2.1 Network Configuration . 10
2.2 Sensor Output Visualization . 11

3 Sensor Data 12
3.1 Coordinate Frames and XYZ Calculation . 12

3.1.1 Lidar Coordinate Frame . 12
3.1.2 Lidar Range to XYZ . 13
3.1.3 Sensor Coordinate Frame . 14
3.1.4 Combining Lidar and Sensor Coordinate Frame . 15
3.1.5 Lidar Intrinsic Beam Angles . 15
3.1.6 Lidar Range Data To Sensor XYZ Coordinate Frame 15
3.1.7 IMU Data To Sensor XYZ Coordinate Frame . 16

3.2 Lidar Data . 17
3.2.1 Lidar Data Format . 17
3.2.2 Lidar Data Packet Size Calculation . 19
3.2.3 Calibrated Reflectivity . 19

3.3 IMU Data . 20
3.3.1 IMU Data Format . 20

3.4 Data Rates . 23
3.5 Sensor Performance by Operating Configuration . 23

3.5.1 Estimated range multiplier . 23
3.5.2 Maximal representable range . 24
3.5.3 Estimated precision multiplier . 25

4 Key Features 26
4.1 Azimuth Window . 26

4.1.1 Expected Sensor Behavior . 27
4.1.2 Azimuth Window Examples . 27

4.2 Phase Lock . 28
4.2.1 Phase Locking Reference Frame . 28
4.2.2 Phase Locking Commands . 29
4.2.3 Multi-sensor Example . 29
4.2.4 Accuracy . 30
4.2.5 Phase Locking Alerts . 31

4.3 Standby Operating Mode . 31
4.3.1 Expected Sensor Behavior . 31
4.3.2 Standby Operating Mode Examples . 31

4.4 Cold Start . 33
4.4.1 Hardware Requirements . 33
4.4.2 Cold Start Operation . 33
4.4.3 Indications and Alerts . 34

4.5 Signal Multiplier . 34

2

4.5.1 Use . 35
4.5.2 Expected Behavior . 35
4.5.3 Examples . 35

4.6 Features / Releases Support Table . 36

5 Time Synchronization 37
5.1 Timing Overview Diagram . 37
5.2 Sensor Time Source . 38

5.2.1 Setting Ouster Sensor Time Source . 38
5.2.2 External Trigger Clock Source . 40

5.3 NMEA Message Format . 41

6 Inputs and Interfaces 43
6.1 Web Interface . 44
6.2 Electrical and Mechanical Interface . 44

7 Troubleshooting 45
7.1 Sensor Homepage and HTTP Server . 45
7.2 Networking . 45
7.3 get_alerts . 45
7.4 Using Latest Firmware . 47

8 HTTP API Reference 48
8.1 system/firmware . 48

8.1.1 GET /api/v1/system/firmware . 48
8.2 diagnostics . 48

8.2.1 GET /api/v1/diagnostics/dump . 48
8.3 system/network . 49

8.3.1 GET /api/v1/system/network . 49
8.3.2 GET /api/v1/system/network/ipv4 . 50
8.3.3 GET /api/v1/system/network/ipv4/override . 50
8.3.4 PUT /api/v1/system/network/ipv4/override . 51
8.3.5 DELETE /api/v1/system/network/ipv4/override . 51

8.4 time . 52
8.4.1 GET /api/v1/time . 52
8.4.2 GET /api/v1/time/system . 54
8.4.3 GET /api/v1/time/ptp . 56
8.4.4 GET /api/v1/time/ptp/profile . 58
8.4.5 PUT /api/v1/time/ptp/profile . 58
8.4.6 GET /api/v1/time/sensor . 59

9 TCP API 61
9.1 Querying Sensor Info and Intrinsic Calibration . 61
9.2 Querying Active or Staged Parameters . 67
9.3 Setting Configuration Parameters . 71

10 API Changelog 76

11 Alerts and Errors 81
11.1 Table of All Alerts and Errors . 81

12 Lidar Packet Format Update 88

3

13 Inter-sensor Interference Mitigation 90
13.1 Two Sensor Example . 90

14 Drivers 93

15 PTP Profiles Guide 94
15.1 PTP Profiles . 94
15.2 PTP HTTP API . 94
15.3 Enabling the PTP profiles . 95

15.3.1 Example using cURL . 95
15.3.2 Example using Httpie . 95

15.4 Sync Verification . 95

16 PTP Quickstart Guide 96
16.1 Assumptions . 96
16.2 Physical Network Setup . 96

16.2.1 Third Party Grandmaster Clock . 96
16.2.2 Linux PTP Grandmaster Clock . 97

16.3 Example Network Setup . 98
16.4 Installing Necessary Packages . 98
16.5 Ethernet Hardware Timestamp Verification . 99
16.6 Configurations . 100

16.6.1 Configuring ptp4l for Multiple Ports . 100
16.6.2 Configuring ptp4l as a Local Master Clock . 102
16.6.3 Configuring phc2sys to Synchronize the System Time to the PTP Clock 102
16.6.4 Configuring Chrony to Set System Clock Using PTP 103

16.7 Verifying Operation . 105
16.7.1 Sensor PTP Sync Verification . 105
16.7.2 LinuxPTP PMC Tool . 106
16.7.3 Tested Grandmaster Clocks . 107

17 Networking Guide 109
17.1 Networking 101 . 109
17.2 Windows . 110

17.2.1 Connecting the Sensor . 110
17.2.2 The Sensor Homepage . 110
17.2.3 Determining the IPv4 Address of the Sensor . 111
17.2.4 Determining the IPv4 Address of the Interface . 112
17.2.5 Setting the Host Interface to DHCP . 112
17.2.6 Setting the Host Interface to Static IP . 113
17.2.7 Finding a Sensor with mDNS Service Discovery . 113

17.3 macOS . 115
17.3.1 Connecting the Sensor . 115
17.3.2 The Sensor Homepage . 115
17.3.3 Determining the IPv4 Address of the Sensor . 115
17.3.4 Determining the IPv4 Address of the Interface . 116
17.3.5 Setting the Host Interface to DHCP . 117
17.3.6 Setting the Host Interface to Static IP . 118
17.3.7 Finding a Sensor with mDNS Service Discovery . 118

17.4 Linux . 120
17.4.1 Connecting the Sensor . 120
17.4.2 Setting the Interface to Link-Local Only . 120

4

17.4.3 The Sensor Homepage . 121
17.4.4 Determining the IPv4 Address of the Sensor . 122
17.4.5 Determining the IPv4 Address of the Interface . 123
17.4.6 Setting the Host Interface to DHCP . 124
17.4.7 Setting the Host Interface to Static IP . 125
17.4.8 Finding a Sensor with mDNS Service Discovery . 127

18 GPS/GNSS Synchronization Guide 128
18.1 Setting up your GPS/GNSS . 128
18.2 Connecting the Hardware . 128
18.3 Configuring the Ouster Sensor . 130

18.3.1 Checking for Sync . 131

19 Updating Firmware 133
19.1 Downgrading Firmware . 133

20 Firmware Changelog 134

5

1 Safety and Safe Use

1.1 Safety & Legal Notices

All Ouster sensors have been evaluated to be Class 1 laser products per 60825-1: 2014 (Ed. 3) and
operate in either the 850nm or 865nm band.

Tous les capteurs Ouster répondent aux critères des produits laser de classe 1, selon la norme IEC
60825-1: 2014 (3ème édition) et émettent dans le domaine de l’infrarouge, à une longueur d’onde
de XXXXXXXXX environ.

FDA 21CFR1040 Notice: All Ouster sensors comply with FDA performance standards for laser prod-
ucts except for deviations pursuant to Laser Notice No. 56, dated January 19, 2018.

Notice FDA 21CFR1040: Tous les capteurs Ouster sont conformes aux exigences de performances
établies par la FDA pour les produits laser, à l’exception des écarts en application de l’avis nº56, daté
du 19 janvier 2018.

The following symbols appear on the product label and in the manual and have the following meaning.

This symbol indicates that the sensor emits laser radiation.

This symbol indicates the presence of a hot surface that may cause skin burn.

CAUTIONS:

All Ouster sensors are hermetically sealed units, and are not user-serviceable.

Use of controls, or adjustments, or performance of procedures other than those specified herein,
may result in hazardous radiation exposure.

6

Your use of any Ouster sensor is subject to the Terms of Sale that you signed with Ouster or your
distributor/integrator. Included in these terms is the prohibition on:

Removing or otherwise opening the sensor housing

Inspecting the internals of the sensor

Reverse-engineering any part of the sensor

Permitting any third party to do any of the foregoing

Operating the sensor without either the attached mount with which the sensor is shipped, or
attaching the sensor to a surface of appropriate thermal capacity runs the risk of having the
sensor overheat under certain circumstances.

This product emits Class 1 invisible laser radiation. The entire window is considered to be the
laser aperture. While Class 1 lasers are considered to be “eye safe”, avoid prolonged direct view-
ing of the laser and do not use optical instruments to view the laser.

When operated in an ambient temperature >40°C, the metallic surfaces of the sensor may be
hot enough to potentially cause skin burn. Avoid skin contact with the sensor’s base, lid and
heatsink when the sensor is operated under these conditions.The sensor should not be used in
an ambient temperature above 50°C. 50°C is the maximum safety certified ambient operating
temperature.

PRECAUTIONS:

Tous les capteurs Ouster sont des unités hermétiquement scellées, qui ne peuvent être en-
tretenues ou modifiées par l’utilisateur.

L’utilisation de commandes, de réglages, ou l’exécution de procédures autres que celles spéci-
fiées dans le présent document peuvent entraîner des rayonnements laser dangereux.

L’utilisation d’un capteur Ouster est soumise aux conditions de vente signées avec Ouster ou le
distributeur/intégrateur, incluant l’interdiction de:

Retirer ou ouvrir de quelque façon le boîtier du capteur

Analyser les composants internes du capteur

Pratiquer la rétro-ingénierie de toute ou partie du capteur

Autoriser une tierce personne à mener les actions listées ci-dessus

L’utilisation du capteur sans son dissipateur thermique fourni lors de la livraison ou une utilisa-
tion qui ne maintiendrait pas un contact suffisant avec une surface aux propriétés thermiques
adéquates, présentent toutes deux un risque de surchauffe du capteur dans certaines circon-
stances.

Ce produit émet un rayonnement laser invisible de classe 1. L’ouverture de sortie du laser est
constituée par la fenêtre du capteur dans sa totalité. Même si les lasers de classe 1 ne sont pas
considérés comme dangereux pour les yeux, ne regardez pas directement le rayonnement laser
de façon prolongée et n’utilisez pas d’instruments optiques pour observer le rayonnement laser.

7

Lors d’une utilisation à température ambiante supérieure à 40°C, la surface métallique du cap-
teur peut présenter des risques de brûlures pour la peau. Dans ces conditions, il est important
d’éviter tout contact avec la partie supérieure, la base ou le dissipateur thermique du capteur.
Le capteur ne doit pas être utilisé à une température ambiante supérieure à 50˚C. 50˚C est la
température maximale certifiée d’opération sûre du capteur.

Equipment Label: Note that the equipment label, which includes model and serial number and notice
that the unit is a Class 1 Laser Product, is affixed to the underside of the Sensor Enclosure Base itself.
It is only visible after the attached mount with which the Sensor is shipped, is removed. Please refer
to location details in the Mounting section of the Hardware User Manual.

L’étiquette de l’équipement, comprenant le modèle, le numéro de série, et la classification du produit
laser (ici, classe 1), est apposée au-dessous de la base du boîtier du capteur. Il n’est visible qu’après
avoir retiré le diffuseur de chaleur avec lequel le capteur est expédié. L’emplacement est décrit avec
précision dans le Manuel d’Utilisateur Hardware (Hardware User Manual), dans la section «Mounting»

Electromagnetic Compatibility: Your Ouster sensor is an FCC 47 CfR 15 Subpart B device. This device
complies with part 15 of the FCC Rules. Operation is subject to the following conditions: (1) This
devicemay not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

“Ouster”, “OS0”, “OS1”, and “OS2” are all registered trademarks of Ouster, Inc. They may not be used
without express permission from Ouster, Inc.

If you have any questions about the above points, please contact legal@ouster.io.

1.2 Proper Assembly, Maintenance and Safe Use

All Ouster sensorsmay be easily set up bymounting to the base to amounting with the correctmount-
ing hole pattern and following the interconnection instructions delineated in the Mounting section
of the Hardware User Manual. Any mounting orientation is acceptable. Each sensor is shipped at-
tached to a mount for test or normal use specified operating temperature range, but the sensor may
be mounted directly to any appropriate mount with Thermal Capacity appropriate for the application
of the user. Please contact Ouster for assistance with approving the use of user specific mounting
arrangements.

Any attempt to utilize the sensor outside the Environmental parameters delineated in the relevant
data sheet for your Ouster sensor may result in voiding the warranty.

When power is applied, the sensor powers up and commences boot-up with the laser disabled. The
bootup sequence is approximately 60s in duration, after which the internal sensor optics subassembly
commences spinning, and the laser is activated, and the unit operates in the default 1024 x 10Hzmode.
When the sensor is running, and the laser is operating, a faint red flickering light may be seen behind
the optical window. Note that all Ouster sensors utilize either an 850nm or 865 nm infrared laser
that is only dimly discernible to the naked eye, while transmitting a laser eye-safe fundamental signal
in the respective IR band. Refer to the appropriate Hardware User Manual to determine the specific
wavelength of your sensor. While the sensor is fully Class 1 eye safe, Ouster strongly recommends
against peering into the optical window at close rangewhile the sensor is operating. All Ouster sensors
are hermetically sealed units, and are not user-serviceable. Any attempt to unseal the enclosure has
the potential to expose the operator to hazardous laser radiation.

8

mailto:legal@ouster.io

Ouster sensors are equipped with a multi-layer series of internal safety interlocks to ensure compli-
ance to Class 1 Laser Eye Safe limits.

The Sensor user interfacemay be used configure the sensor to a number of combinations of scan rates
and resolutions other than the default values of 1024 x 10 Hz resolution. In all available combinations,
the unit has been evaluated by an NRTL to remain within the classification of a Class 1 Laser Device
as per IEC 60825-1:2014 (Ed. 3).

1.2.1 Assemblage correct et utilisation sûre

Tous les capteurs Ouster s’installent facilement en fixant la base sur un support percé de trous concor-
dants et en suivant les instructions d’interconnexion décrites le Manuel d’Utilisateur Hardware (Hard-
ware User Manual). Toute orientation demontage est acceptable. Chaque capteur est expédié équipé
d’un dissipateur de chaleur, utilisable en phase de test et en conditions normales. Néanmoins tout
autre support présentant une capacité thermique appropriée pour l’application de l’utilisateur peut
être utilisé. Veuillez contacter Ouster dans le cas où un montage spécifique à votre application serait
nécessaire.

Toute tentative d’utilisation du capteur en dehors des paramètres environnementaux définis dans la
fiche technique de votre capteur Ouster peut entraîner l’annulation de la garantie.

Lorsque le capteur est sous tension, celui-ci démarre et commence son initialisation avec le laser dés-
activé. Le temps de démarrage est d’environ 60s, après quoi le sous-système optique entre en rotation
et le laser est activé, le capteur opère alors dans sonmode par défaut de 1024 x 10 Hz. Lorsque le cap-
teur est en marche et que le laser est activé, on peut apercevoir une faible lumière rouge vacillante
derrière la vitre teintée. Tous les capteurs Ouster utilisent des longueurs d’ondes infra-rouge de 850
ou 865 nm à peine perceptible pour l’œil humain, et le rayonnement laser IR émis est sans danger pour
les yeux. La longueur d’onde spécifique de votre capteur est disponible dans le Manuel d’Utilisateur
Hardware (Hardware User Manual). Cependant, bien que les rayonnements laser de classe 1 soient
sans danger dans des conditions raisonnablement prévisibles, Ouster recommande fortement de ne
pas regarder fixement la vitre teintée pendant que le capteur est en marche. Tous les capteurs Ouster
sont des unités hermétiquement scellées, qui ne peuvent pas être entretenues, modifiées ou réparées
par l’utilisateur. Toute tentative d’ouverture du boîtier a pour risque d’exposer l’opérateur à un rayon-
nement laser dangereux.

Les capteurs Ouster sont équipés d’une série de dispositifs de sécurité à plusieurs niveaux, de façon à
assurer en toutes circonstances le respect des limites d’irradiance correspondant aux rayonnements
lasers de classe 1, sans danger pour les yeux.

L’interface utilisateur du logiciel du capteur peut être utilisée pour configurer le capteur selon un cer-
tain nombre de combinaisons de vitesses de balayage et de résolutions autres que les valeurs utilisées
par défaut, respectivement de 1024 x 10 Hz.

9

2 Connecting to Sensor

Your Ouster sensor requires a computer with a gigabit Ethernet connection and a 24V supply. Option-
ally you may time synchronize the sensor through an external time source or through the computer
via PTP.

2.1 Network Configuration

The sensor is designed to communicate with a host machine through a variety of different methods
such a DHCP, IPv6/IPv4 link-local, and static IP.

On most systems you should be able to connect the sensor into your network or directly to a host
machine and simply use the sensor hostname to communicate with it.

The sensor hostname is, os-991234567890.local, where 991234567890 is the sensor serial number.

For more detailed guidance on communicating with the sensor on various operating systems and net-
work settings please reference the Networking Guide in the Appendix.

Commands for setting anddeleting a static IP address can be found in theHTTPAPI Reference section.

Note: It may be required to deactivate your firewall to connect with the sensor and access sensor

10

data.

2.2 Sensor Output Visualization

After connecting to your sensor, you can quickly visualize the point cloud through either Ouster Studio
or with our sample drivers. Both Ouster Studio and our sample drivers are available for Linux, Mac, and
Windows. Please visit www.ouster.com/resources for the latest tools to visualize your sensor output.

11

3 Sensor Data

3.1 Coordinate Frames and XYZ Calculation

Ouster defines two coordinate frames:

The Lidar Coordinate Frame follows the Right Hand Rule convention and is a point cloud-centric
frame of reference that is the simplest frame in which to calculate and manipulate point clouds. The
X-axis points backwards towards the external connector, which is an unintuitive orientation that was
deliberately chosen to meet the following criteria:

data frames split at the back of the sensor i.e. the external connector

data frames start with the azimuth angle equal to 0°

All point cloud features including setting an azimuthwindow and phase locking are defined in the Lidar
Coordinate Frame.

The Sensor Coordinate Frame follows the Right Hand Rule convention and is a mechanical housing-
centric frame of reference that follows robotics convention with X-axis pointing forward. Ouster-
provided drivers and visualizers represent data in the Sensor Coordinate Frame.

Note: All Ouster coordinate frames follow the Right Hand Rule, allowing for standard 3D transfor-
mation matrix math to convert between them. For multi-sensor systems that require calibration, this
Linear Algebra-based approach can be convenient. However, customers with single-sensor systems
may find it more intuitive to stay in the Lidar Coordinate Frame and take arithmetic shortcuts.

3.1.1 Lidar Coordinate Frame

The Lidar Coordinate Frame is defined at the intersection of the lidar axis of rotation and the lidar
optical midplane (a plane parallel to Sensor Coordinate Frame XY plane and coincident with the 0°
elevation beam angle of the sensor).

The Lidar Coordinate Frame axes are arranged with:

positive X-axis pointed at encoder angle 0° and the external connector

positive Y-axis pointed towards encoder angle 90°

positive Z-axis pointed towards the top of the sensor

The Lidar Coordinate Frame is marked in both diagrams below with XL, YL, and ZL.

12

3.1.2 Lidar Range to XYZ

Given the following information, range data may be transformed into 3D cartesian XYZ coordinates in
the Lidar Coordinate Frame:

From a measurement block from the UDP packet:

encoder_count of the measurement block

range_mm value of the data block of the i-th channel

From the get_beam_intrinsics TCP command:

lidar_origin_to_beam_origin_mm value

beam_altitude_angles array

beam_azimuth_angles array

The corresponding 3D point can be computed by

r = range_mm

n = lidar_origin_to_beam_origin_mm

θencoder = 2π ·
(
1− encoder_count

90112

)
θazimuth = −2π

beam_azimuth_angles[i]
360

ϕ = 2π
beam_altitude_angles[i]

360

x = (r − n) cos (θencoder + θazimuth) cos(ϕ) + n cos (θencoder)
y = (r − n) sin (θencoder + θazimuth) cos(ϕ) + n sin (θencoder)
z = (r − n) sin(ϕ)

Figures Fig. 3.1 and Fig. 3.2 show, respectively, a top-down and side view of the sensor.

Figure3.1: Top-down view of Lidar Coordinate Frame

13

Figure3.2: Side view of Lidar Coordinate Frame

3.1.3 Sensor Coordinate Frame

The Sensor Coordinate Frame is defined at the center of the sensor housing on the bottom, with the
X-axis pointed forward, Y-axis pointed to the left and Z-axis pointed towards the top of the sensor. The
external connector is located in the negative x direction. The Sensor Coordinate Frame is marked in
the diagram below with XS, YS, ZS.

Figure3.3: Top-down view of Sensor Coordinate Frame

14

Figure3.4: Side view of Sensor Coordinate Frame

3.1.4 Combining Lidar and Sensor Coordinate Frame

The Lidar Coordinate Frame’s positive X-axis (0 encoder value) is opposite the Sensor Coordinate
Frame’s positive X-axis to center lidar data about the Sensor Coordinate Frame’s positive X-axis. A
single measurement frame starts at the Lidar Coordinate Frame’s 0° position and ends at the 360°
position. This is convenient when viewing a “range image” of the Ouster Sensor measurements, al-
lowing the “range image” to be centered in the Sensor Coordinate Frame’s positive X-axis, which is
generally forward facing in most robotic systems.

The Ouster Sensor scans in the clockwise direction when viewed from the top, which is a negative
rotational velocity about the Z-axis. Thus, as encoder ticks increase from 0 to 90,111, the actual angle
about the Z-axis in the Lidar Coordinate Frame will decrease.

3.1.5 Lidar Intrinsic Beam Angles

The intrinsic beam angles for each beam may be queried with a TCP command get_beam_intrinsics
to provide an azimuth and elevation adjustment offset to each beam. The azimuth adjustment is
referenced off of the current encoder angle and the elevation adjustment is referenced from the XY
plane in the Sensor and Lidar Coordinate Frames.

3.1.6 Lidar Range Data To Sensor XYZ Coordinate Frame

For applications that require calibration against a precision mount or use the IMU data in combination
with the lidar data, the XYZ points should be adjusted to the Sensor Coordinate Frame. This requires
a Z translation and a rotation of the X,Y,Z points about the Z-axis. The z translation is the height of the
lidar aperture stop above the sensor origin, which varies depending on the sensor you have, and the
data must be rotated 180° around the Z-axis. This information can be queried over TCP in the form of
a homogeneous transformation matrix in row-major ordering.

Example JSON formatted query using the TCP command get_lidar_intrinsics:

15

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 36.180, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_lidar_to_sensor =


−1 0 0 0

0 −1 0 0

0 0 1 36.180

0 0 0 1


The table below lists all product lines’ distances of the aperture stop above the sensor origin for use
in the z translation.

Product Line Lidar aperture stop above sensor origin

OS0 36.180 mm

OS1 36.180 mm

OS2 74.296 mm

3.1.7 IMU Data To Sensor XYZ Coordinate Frame

The IMU is slightly offset in the Sensor Coordinate Frame for practical reasons. The IMU origin in the
Sensor Coordinate Frame can be queried over TCP in the form of an homogeneous transformation
matrix in row-major ordering.

Example JSON formatted query using the TCP command get_imu_intrinsics:

{
"imu_to_sensor_transform": [1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 7.645, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_imu_to_sensor =


1 0 0 6.253

0 1 0 −11.775

0 0 1 7.645

0 0 0 1



16

3.2 Lidar Data

3.2.1 Lidar Data Format

Note: Gen 1 OS1-16 and OS1-32 customers should note that upgrading to firmware v2.0.0 or higher
will change their lidar packet formatwhich reduces their data rateswhich is not backwards compatible
with pre-v2.0.0 clients. Please refer to the Lidar Packet Format Update section for more information
on this change.

Lidar data packets consist of 16 Measurement Blocks and vary in size relative to the number of chan-
nels in the sensor. The packet rate is dependent on the lidar mode. Words are 32 bits in length and
little endian. By default, lidar UDP data is forwarded to Port 7502.

Lidar frames are composed of 512, 1024, or 2048 measurement blocks, depending upon lidar mode
and are completely deterministic in number per frame and their monotonic order and position within
lidar data packets. This determinism allows for efficient lookup table-based decoding in clients.

Each Measurement Block contains:

Header Block [128 bits]

Timestamp [64 bit unsigned int] - timestamp of the measurement in nanoseconds.

Measurement ID [16 bit unsigned int] - a sequentially incrementing measurement counting
up from 0 to 511, or 0 to 1023, or 0 to 2047 depending on lidar_mode.

Frame ID [16 bit unsigned int] - index of the lidar scan. Increments every time the sensor
completes a rotation, crossing the zero point of the encoder.

Encoder Count [32 bit unsigned int] - an azimuth angle as a raw encoder count, starting
from 0with amax value of 90,111 - incrementing 44 ticks every azimuth angle in 2048mode,
88 ticks in 1024mode, and 176 ticks in 512mode. Note: the encoder count is redundant with
the Measurement ID and will be deprecated in the future.

N Channel Data Blocks [96 bits each]

Range [32 bit unsigned int - only 20 bits used] - range in millimeters, discretized to the
nearest 3 millimeters.

Calibrated Reflectivity [8 bit unsigned int] - sensor Signal Photons measurements are
scaled based on measured range and sensor sensitivity at that range, providing an indi-
cation of target reflectivity. Note that calibrated reflectivity has certain hardware require-
ments. Please refer to the Calibrated Reflectivity section for more details.

Signal Photons [16 bit unsigned int] - signal intensity photons in the signal returnmeasure-
ment are reported.

Near Infrared Photons [16 bit unsigned int] - NIR photons related to natural environmental
illumination are reported.

Measurement Block Status [32 bits]- indicates whether the measurement block contains valid

17

or zero-padded data in its channels’ Data Blocks. Valid = 0xFFFFFFFF, Padded = 0x0. If the
Measurement Block Status is Padded (e.g. in the case of channel data being dropped or if the
Measurement Block is outside of the azimuth window), values within the Channel Data Blocks
will be 0, but values within the Header Block remain valid.

18

3.2.2 Lidar Data Packet Size Calculation

The table below shows the lidar data packet size breakdown for all products. Since the size of the
measurement block varies proportional to the number of channels in a sensor, all sensors with the
same number of channels have the same lidar packet data structure and size.

Product Number of words in Mea-
surement Block

Size of single Measure-
ment Block (Bytes)

Size of lidar
packet (Bytes)

OS1-16 53 212 3,392

OS0-32, OS1-32,
OS2-32

101 404 6,464

OS0-64, OS1-64,
OS2-64

197 788 12,608

OS0-128, OS1-
128, OS2-128

389 1,556 24,896

3.2.3 Calibrated Reflectivity

Starting in firmware v2.1.0, sensors have an 8-bit reflectivity data field. Existing sensors in the field
that update to v2.1.0 will have default calibration values pushed to them. Sensors that have been
factory calibrated for reflectivity will have a higher accuracy of reflectivity.

The command get_calibration_status will return the status of your sensor calibration. The calibration
status is returned with the following format:

{
"reflectivity":
{

"valid": "true: if factory calibrated for better accuracy, false: if not calibrated -- using default�
↪→values and likely has less accuracy",

"timestamp": "Date when the calibration has been performed"
}

}

Please contact your support@ouster.io if you have questions on whether your sensor is hardware-
enabled for calibrated reflectivity.

19

mailto:support@ouster.io

Reflectivity Data Mapping

Reflectivity values between 0-100 are linearly mapped for lambertian targets with values between 0%
and 100% reflectivity. Values between 101-255 are mapped as log 2 with linear interpolation between
logarithmic points for retroreflective targets. The 255 value corresponds to a retroreflector 864x
stronger than a 100% lambertian target. The charts below show the mapping functions.

3.3 IMU Data

3.3.1 IMU Data Format

IMU UDP Packets are 48 Bytes long and by default are sent to Port 7503 at 100 Hz. Values are little
endian.

Each IMU data block contains:

IMU Diagnostic Time [64 bit unsigned int] - timestamp of monotonic system time since boot in
nanoseconds.

Accelerometer Read Time [64 bit unsigned int] - timestamp for accelerometer time relative to
timestamp_mode in nanoseconds.

Gyroscope Read Time [64 bit unsigned int] - timestamp for gyroscope time relative to times-
tamp_mode in nanoseconds.

Acceleration in X-axis [32 bit float] - acceleration in g.

20

21

Acceleration in Y-axis [32 bit float] - acceleration in g.

Acceleration in Z-axis [32 bit float] - acceleration in g.

Angular Velocity about X-axis [32 bit float] - Angular velocity in deg per sec.

Angular Velocity about Y-axis [32 bit float] - Angular velocity in deg per sec.

Angular Velocity about Z-axis [32 bit float] - Angular velocity in deg per sec.

Note that the first timestamp (Words 0,1) is for diagnostics only and is rarely used under normal op-
eration.

The second two timestamps, (Words 2,3) and (Words 4,5), are sampled on the same clock as the lidar
data, so should be used for most applications.

Ouster provides timestamps for both the gyro and accelerometer in order to give access to the lowest
level information. In most applications it is acceptable to use the average of the two timestamps.

22

3.4 Data Rates

The table below calculates the data of all products operating at the highest lidar modes, 2048x10 or
1024x20 and assuming a default azimuth window of 360°. Providing a custom azimuth window can
further lower data rate. See the Azimuth Window section for details on setting a custom azimuth
window.

Product Lidar packet
size (Bytes)

Lidar packets
rate * (Hz)

IMU packet
size (Bytes)

IMU packets
per second

Data rate
(Mbps)

OS1-16 3,392 1,280 48 100 34.77

OS0-32, OS1-
32, OS2-32

6,464 1,280 48 100 66.23

OS0-64, OS1-
64, OS2-64

12,608 1,280 48 100 129.14

OS0-128, OS1-
128, OS2-128

24,896 1,280 48 100 254.97

Lidar packets account for >99% of data coming from the sensor. For most applications, a gigabit
Ethernet network connection is required for reliable performance.

3.5 Sensor Performance by Operating Configuration

Depending upon the sensor’s lidar mode and signal multiplier setting, the sensor performance will
vary from its baseline as listed on the datasheet. This section will present the estimated performance
multiplier depending on the sensor and the operating configuration.

3.5.1 Estimated range multiplier

When using a signal multiplier higher than 1x and depending on the lidar mode, the sensor will get a
range increase. The following tables present an estimated rangemultiplier depending on the operating
configuration.

23

OS0 and OS1

For the OS0 and OS1 sensors the baseline is the 1024x10 mode

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 1.19 1.41 1.57 1.00 1.19 1.32 0.84 1.00 1.11

20 Hz 1.00 1.19 1.32 0.84 1.00 1.11 NA

OS2

For OS2 sensors the baseline is the 2048x10 mode.

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 1.41 1.68 1.86 1.19 1.41 1.57 1.00 1.19 1.32

20 Hz 1.19 1.41 1.57 1.00 1.19 1.32 NA

Note: The values in the tables above are given for guidance only. The only specs guaranteed are the
ones defined in the sensor datasheet for a specific mode.

3.5.2 Maximal representable range

Depending upon the signal multiplier, the maximal representable range of the sensor will be different.
The table below shows the maximal representable range values for each sensor type and multiplier
value.

Signal Multiplier Value OS0 OS1 OS2

1x 270 m 270 m 465 m

2x 135 m 135 m 232 m

3x 90 m 90 m 155 m

Range returns beyond the maximal representable range will experience range aliasing. Therefore,
these modes are only recommended in scenarios where there will not be any returns beyond the max-
imal representable range.

24

3.5.3 Estimated precision multiplier

When using a signal multiplier higher than 1x and depending on the lidar mode, the sensor will get a
precision improvement. The following tables present an estimated precision multiplier depending on
the operating configuration.

OS0 and OS1

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 0.71 0.50 0.41 1.00 0.71 0.58 1.41 1.00 0.82

20 Hz 1.00 0.71 0.58 1.41 1.00 0.82 NA

OS2

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 0.50 0.35 0.29 0.71 0.50 0.41 1.00 0.71 0.58

20 Hz 0.71 0.50 0.41 1.00 0.71 0.58 NA

Please refer to the Signal Multiplier section for more details.

25

4 Key Features

4.1 Azimuth Window

Configuring the azimuth window is a feature to only turn on the UDP lidar data within a region of
interest. The region of interest is defined by a min bound and a max bound, both in millidegrees. As
a reminder, angles in this frame increment counterclockwise when viewed from the top. Below is the
Lidar Coordinate Frame from a top-down perspective:

0° towards the external connector

90° a quarter turn counterclockwise from the connector

180° opposite the connector

270° three quarter turns counterclockwise from the connector

Configuring the azimuth window lowers the average output data rate of the sensor but does not affect
the peak output data rate of the sensor. It also does not stop the lasers from firing and thus does not
have an effect on power consumption or thermals.

26

4.1.1 Expected Sensor Behavior

The sensor will round the input azimuth window bounds to the nearest Measurement Block IDs gen-
erating new ID-based bounds. The new bounds are used to mask Measurement Blocks in the lidar
data packets. Lidar packets containing only masked Measurement Blocks are not output, and there
may be partially maskedMeasurement Blocks in the two bookended lidar packets in each frame. The
Measurement Block Status field will indicate the valid or masked/paddedMeasurement Blocks in any
partially masked lidar packets. (See the Lidar Data section for details on the lidar data format.)

The visualized output will contain jagged edges caused by the staggered, nonzero nature of the beam
azimuth angles. It is necessary to set more conservative (wider) bounds to push the jagged edges
beyond the desired window. This can be determined through trial and error or calculated determinis-
tically with knowledge of the queryable beam azimuth angles.

4.1.2 Azimuth Window Examples

The TCP API Guide lists the command for setting an azimuth window. Below are example settings.

The command syntax is as follows: set_config_param azimuth_window [min_bound_millidegrees,
max_bound_millidegrees]

Default settings of 360° window:

set_config_param azimuth_window [0, 360000]

This will also default to a 360° window:

set_config_param azimuth_window [0, 0]

Set a region of interest between 0° to 180°:

set_config_param azimuth_window [0, 180000]

Set a region of interest between 270° to 90° with 180° field of view:

set_config_param azimuth_window [270000, 90000]

Set a region of interest 90° to 270° with 180° field of view:

set_config_param azimuth_window [90000, 270000]

Set a region of interest between 0° to 90° with 90° field of view:

set_config_param azimuth_window [0, 90000]

Set a region of interest 90° to 360° with 270° field of view:

set_config_param azimuth_window [90000, 0]

27

4.2 Phase Lock

Phase locking allows a sensor to consistently pass through a specific angle at the top, tenth (10 Hz
mode), or fifth (20 Hz mode) of a second on each rotation. The phase lock control loop runs at 1000
Hz. Phase locking is useful for synchronizing a sensor with other devices including camera, radar, and
other lidar.

A sensor must first be time-synchronized from an external source and must be in either the
TIME_FROM_PTP_1588 or TIME_FROM_SYNC_PULSE_IN timestamp_mode before entering phase lock.

4.2.1 Phase Locking Reference Frame

Phase locking commands use angles defined in the Lidar Coordinate Frame in millidegrees. As a re-
minder, angles in this frame increment counterclockwise when viewed from the top. Below is the Lidar
Coordinate Frame from a top-down perspective:

0° towards the external connector

90° a quarter turn counterclockwise from the connector

180° opposite the connector

270° three quarter turns counterclockwise from the connector

28

4.2.2 Phase Locking Commands

The TCP API Guide lists the two commands needed to achieve phase lock.

Command to enable or disable phase lock:

By default, phase_lock_enable is false

set_config_param phase_lock_enable <true/false>

Command to set the phase lock offset angle in the Lidar Coordinate Frame:

By default, phase_lock_offset value is 0 <angle_in_millidegrees> is an integer from 0 to 360000

set_config_param phase_lock_offset <angle_in_millidegrees>

4.2.3 Multi-sensor Example

In this example below, we are trying to phase lock all three sensors on the car so that they point towards
the front of the car at the same time. Note that their external connectors point in different directions.

Assuming the three sensors are properly time synchronized via an external source, the following shows
the netcat console input commands and responses from configuring the sensors so that they point
forward at the same time.

Note: In the examples below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

Set Sensor 1 to phase lock at 180°:

$ nc sensor1_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 180000
-set_config_param

(continues on next page)

29

(continued from previous page)

reinitialize
-reinitialize
save_config_params
-save_config_params

Set Sensor 2 to phase lock at 90°:

$ nc sensor2_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 90000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Set Sensor 2 to phase lock at 270°:

$ nc sensor3_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 270000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

4.2.4 Accuracy

The following chart shows the expected angular position accuracy under normal operating conditions.

Product Line Accuracy

10 Hz 20 Hz

OS0 and OS1 (Gen 1 and Gen 2) 0.5˚ 0.5˚

OS2 5˚ 10˚

30

4.2.5 Phase Locking Alerts

The following alerts related to phase locking errors are listed below. For the full list of alerts and errors
see the Alerts and Errors section in the Appendix.

Table 4.1: Phase Lock Alerts

id category level description

0x01000050 MOTOR_CONTROL WARN-
ING

The phase lock offset error has exceeded the
threshold.

0x01000051 MOTOR_CONTROL ERROR The phase lock control failed to achieve a
lock multiple times; please contact Ouster at
https://ouster.com/tech-support.

0x01000024 STARTUP ERROR The phase lock control failed to achieve a lock
during startup.

4.3 Standby Operating Mode

Starting with firmware v2.0.0, the sensor can be commanded in and out of a low-power Standby Op-
erating Mode that can be useful for power, battery, or thermal-conscious applications of the sensor.

The TCP config param operating_mode has a default value of NORMAL. Setting it to STANDBY puts the sensor
into Standby Operating Mode upon reinitialization.

4.3.1 Expected Sensor Behavior

Power draw in Standby mode 5W. The motor does not spin, and light is not visible from the window.
However, the sensor is on and listening to commands. The sensor status will be STANDBY.

4.3.2 Standby Operating Mode Examples

Below are example netcat console command input and responses for several use cases of the Standby
mode.

Note: In the examples below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

Set sensor into Standby mode and keep sensor in Standby mode upon power-up at next use:

$ nc os-991900123456 7501
set_config_param operating_mode STANDBY
-set_config_param

(continues on next page)

31

https://ouster.com/tech-support

(continued from previous page)

reinitialize
-reinitialize
save_config_params
-save_config_params

Set sensor into Standby mode but have sensor start in the default Running mode upon power-up at
next use:

$ nc os-991900123456 7501
set_config_param operating_mode STANDBY
-set_config_param
reinitialize
-reinitialize

Command sensor back into Running mode and save config:

$ nc os-991900123456 7501
set_config_param operating_mode NORMAL
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Note: auto_start_flag is the deprecated parameter name where auto_start_flag 0 is equivalent to
operating_mode STANDBY and auto_start_flag 1 is equivalent to operating_mode NORMAL. Please use oper-
ating_mode wherever possible in client code.

Warning: Use of auto_start_flag in firmware prior to v2.0.0 has unexpected behavior.

32

4.4 Cold Start

Starting in v2.0.0, there is software-enabled capability for power-up from lower temperatures for Gen
2 sensors. If the sensor detects that its environmental temperature is low, it will attempt to self-heat
in a warmup state before entering a normal operating state.

4.4.1 Hardware Requirements

Gen 1 sensors are not cold start-compatible on any firmware. While all sensors will attempt to start
at lower exhibit cold start behavior by going into the warmup state, only Gen 2 sensors are able to
successfully exit the warmup state into the normal operating state.

4.4.2 Cold Start Operation

There is nothing for the user to change about the sensor configuration to use this feature. The sensor
will automatically begin its warmup process in the coldest parts of its operating temperature range.

Product Line Min temp specs

OS0
-40°C min operating temp
8 mins to SENSOR_RUNNING
12 mins to lasers at temp (full range)
28W peak power

OS1
-40°C min operating temp
8 mins to SENSOR_RUNNING
12 mins to lasers at temp (full range)
28W peak power

OS2
-20°C min operating temp
15 mins to SENSOR_RUNNING
15 mins to lasers at temp (full range)
30W peak power

33

4.4.3 Indications and Alerts

In a cold start scenario, the sensor will have a short warmup phase; we’ve added in the additional
"WARMUP" status to indicate when the sensor is warming up.

$ nc os-992000123456 7501
get_sensor_info

{
"base_pn": "000-101323-03",
"base_sn": "101933001839",
"build_date": "2020-05-15T18:21:21Z",
"build_rev": "v2.0.0",
"image_rev": "ousteros-image-prod-aries-v2.0.0-20201120210617-staging",
"prod_line": "OS-1-128",
"prod_pn": "840-101855-02",
"prod_sn": "99200123456",
"proto_rev": "v1.1.1",
"status": "WARMUP"
}

The following alerts are related to cold start

Table 4.2: Cold Start Alerts

id category level description

0x01000053 WARMUP_ISSUE ERROR Sensor warmup process has failed.

0x0100004F WARMUP_ISSUE WARN-
ING

Sensor warmup process is taking longer
than expected; please ensure sensor is
thermally constrained per requirements.

4.5 Signal Multiplier

For Gen 2 sensors with firmware v2.1 or higher, the signal_multiplier config parameter allows the user
to set a multiplier for the signal strength of the sensor, which corresponds to a maximum allowable
azimuth window. Lasers are disabled outside of the maximum allowable azimuth window. By default
the sensor has a signal multiplier value of 1.

34

4.5.1 Use

The config parameter signal_multiplier <1/2/3> sets the signal multiple value. For 2x and 3x multipli-
ers, the azimuth_window [int, int] parameter sets the azimuth window that the lasers will be enabled
in. The higher the signal multiplier value, the smaller the maximum azimuth window can be.

Signal Multiplier Value Max Azimuth Window

1 (default) 360°

2 180°

3 120°

All sensors have equivalent power draw and thermal output when operating at the max azimuth win-
dow for a particular signal multiplier value. Therefore, using an azimuth window that is smaller than
the maximum allowable azimuth window with a particular signal multiplier value (excluding 1x) can
reduce the power draw and thermal output of the sensor. However, while this can increase the max
operating temp of the sensor, it can also degrade the performance at low temps. This discrepancy will
be resolved in a future firmware. The table below outlines some example use cases.

Example Use Case signal_multiplier and azimuth_window params

Signal boost 3, [0,120000]

Signal boost with power draw reduction 2, [0,90000]

4.5.2 Expected Behavior

If the sensor has signal multiplier of 1, lasers will be enabled for all 360° of the window, regardless of
the azimuth_window set.

If an invalid pair of signal multiplier and azimuth window values are set, the sensor will throw an error.
If a valid pair of values are set, upon reinitializing, the sensor will operate in the signal multiplier mode.

4.5.3 Examples

The following shows the netcat console input commands and responses for some configuration ex-
amples.

Note: In the examples below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

Set sensor in 3x signal mode with 120° HFoV:

35

$ nc sensor1_hostname 7501
set_config_param set_config_param signal_multiplier 3
-set_config_param
set_config_param azimuth_window [120000, 240000]
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Sensor will throw an error if invalid parameters are set:

$ nc sensor1_hostname 7501
set_config_param signal_multiplier 5
-error: signal_multiplier must be between 1 and 3, inclusive
set_config_param signal_multiplier 3
-set_config_param
set_config_param azimuth_window [120000, 300000]
-set_config_param
reinitialize
-error: for signal_multiplier value of 3, azimuth_window must span a maximum of 120000 millidegrees.�
↪→Current azimuth_window [120000, 300000] spans 180000 millidegrees.

4.6 Features / Releases Support Table

Features Supported FW Ver-
sion

Supported HW Revisions

Signal multiplier 2.1.0 and higher Rev C (PN: 840-102XXX-C) and higher

Azimuth window mask-
ing

2.1.0 and higher Rev C (PN: 840-102XXX-C) and higher

Calibrated reflectivity 2.1.0 and higher OS0 & OS1 Rev C (PN: 840-102XXX-C) and
higher

36

5 Time Synchronization

5.1 Timing Overview Diagram

Signal path with MULTIPURPOSE_IO set as input

Signal path with MULTIPURPOSE_IO set as output

37

5.2 Sensor Time Source

All lidar and IMU data are timestamped to a common timer with 10 nanosecond precision.

The common timer can be programmed to run off one of three clock sources:

An internal clock derived from a high accuracy, low drift oscillator.

An opto-isolated digital input from the external connector for timing off an external hard-
ware trigger such as a GPS. The polarity of this input signal is programmable. For instance,
both a GPS PPS pulse and a 30 Hz frame sync from an industrial camera can supply a timing
signal to the sensor.

Using the IEEE 1588 Precision Time Protocol. PTP provides the convenience of configuring
timing over a network that supports IEEE 1588 with no additional hardware signals.

5.2.1 Setting Ouster Sensor Time Source

The source for measurement timestamps can be configured using the timestamp_mode TCP command.
The available modes are described below:

38

Table5.1: Timestamp Modes

Command Response

TIME_FROM_INTERNAL_OSC Use the internal clock. Measurements are time stamped with ns
since power-on. Free running counter based on the sensor’s inter-
nal oscillator. Counts seconds and nanoseconds since sensor turn
on, reported at ns resolution (both a second and nanosecond reg-
ister in every UDP packet), but min increment is on the order of 10
ns.

TIME_FROM_SYNC_PULSE_IN A free running counter synced to the SYNC_PULSE_IN input
counts seconds (# of pulses) and nanoseconds since sensor turn
on. If multipurpose_io_mode is set to INPUT_NMEA_UART then the sec-
onds register jumps to time extracted from a NMEA $GPRMCmes-
sage read on the multipurpose_io port. Reported at ns resolution
(both a second and nanosecond register in every UDP packet), but
min increment is on the order of 10 ns.

TIME_FROM_PTP_1588 Synchronize with an external PTP master. A monotonically in-
creasing counter that will begin counting seconds and nanosec-
onds since startup. As soon as a 1588 sync event happens, the
time will be updated to seconds and nanoseconds since 1970. The
counter must always count forward in time. If another 1588 sync
event happens the counter will either jump forward to match the
new time, or slow itself down. It is reported at ns resolution (there
is both a second and nanosecond register in every UDP packet),
but the minimum increment varies.

If configuring the sensor to synchronize time from an external sync pulse, the pulse polarity can be
specified as described in the TCP API Guide. Pulse-in frequency is assumed to be 1 Hz. For example,
the below commands will set the sensor to expect an active low pulse and configure the seconds
timestamp to be pulse count since sensor startup:

set_config_param timestamp_mode TIME_FROM_SYNC_PULSE_IN

set_config_param sync_pulse_in_polarity ACTIVE_LOW

reinitialize

If desired to configure the multipurpose-io port of the sensor to accept an external NMEA UART mes-
sage, the multipurpose_io_mode parametermust be set to INPUT_NMEA_UART as described in External Trig-
ger Clock Source. Once a valid UART message is received by the sensor, the seconds timestamp will
snap to the latest timestamp received. The expected NMEA UART message is configurable as de-
scribed in TCP API Guide. For example, the below commands will set the sensor to accept an NMEA
UART message that is active high with a baud rate of 115200 bits per second, add 27 additional leap
seconds, and accept messages even with a valid character not set:

set_config_param multipurpose_io_mode INPUT_NMEA_UART

set_config_param nmea_in_polarity ACTIVE_HIGH

set_config_param nmea_baud_rate BAUD_115200

39

set_config_param nmea_leap_seconds 27

set_config_param nmea_ignore_valid_char 1

reinitialize

5.2.2 External Trigger Clock Source

Additionally, the sensor can be configured to output a SYNC_PULSE_OUT signal from a variety of
sources. See example commands in the TCP API section. Pulses will always be evenly spaced.

This can be enabled through the multipurpose_io_mode configuration parameter.

Configuration Response

OFF Do not output a SYNC_PULSE_OUT signal.

INPUT_NMEA_UART Reconfigures the MULTIPURPOSE_IO port as an input.
See Setting Ouster Sensor Time Source for more infor-
mation.

OUTPUT_FROM_INTERNAL_OSC Output a SYNC_PULSE_OUT signal synchronized with
the internal clock.

OUTPUT_FROM_SYNC_PULSE_IN Output a SYNC_PULSE_OUT signal synchronized with
a SYNC_PULSE_IN provided to the unit.

OUTPUT_FROM_PTP_1588 Output a SYNC_PULSE_OUT signal synchronized with
an external PTP IEEE 1588 master.

OUTPUT_FROM_ENCODER_ANGLE Output a SYNC_PULSE_OUT signal with a user defined
rate in an integer number of degrees.

When the sensor’s multipurpose_io_mode is set to OUTPUT_FROM_INTERNAL_OSC, OUTPUT_FROM_SYNC_PULSE_IN,
or OUTPUT_FROM_PTP_1588, then sync_pulse_out_frequency (Hz) parameter can be used to define the out-
put rate. It defaults to 1 Hz. It should be greater than 0 Hz and maximum sync_pulse_out_frequency is
limited by the criterion below.

When the sensor is set to OUTPUT_FROM_ENCODER_ANGLE, then the sync_pulse_out_angle (deg) parameter
can be used to define the output pulse rate. This allows the user to output a SYNC_PULSE_OUT sig-
nal when the encoder passes a specified angle, or multiple of the angle, indexed from 0 crossing,
in degrees. It should be an integer between 0 and 360 degrees, inclusive. However, the minimum
sync_pulse_out_angle is also limited by the criterion below.

In all modes, the output pulse width is defined by sync_pulse_out_pulse_width (ms).

Note: If sync_pulse_out_pulse_width x sync_pulse_out_frequency is close to 1 second, the output pulses
will not function (will not return to 0). For example, at 10 Hz rotation and a 10 ms pulse width, the
limitation on the number of pulses per rotation is 9.

40

EXAMPLECOMMANDS: Here are example commands and their effect on output pulsewhen lidar_mode
is 1024x10, and assuming sync_pulse_out_pulse_width is 10 ms.

→

Command Response

set_config_param multipurpose_io_mode
OUTPUT_FROM_SYNC_PULSE_IN
set_config_param sync_pulse_out_pulse_width 10
set_config_param sync_pulse_out_frequency 1
reinitialize

The output pulse frequency is 1 Hz. Each pulse
is 10 ms wide. sync_pulse_out_pulse_width and
sync_pulse_out_frequency commands are optional be-
cause they just re-command the default values

set_config_param multipurpose_io_mode
OUTPUT_FROM_SYNC_PULSE_IN
set_config_param sync_pulse_out_frequency 50
reinitialize

The output pulse frequency is 50 Hz. Each pulse is 10
ms wide.

set_config_param multipurpose_io_mode
OUTPUT_FROM_ENCODER_ANGLE
set_config_param sync_pulse_out_angle 360
reinitialize

The output pulse frequency is 10 Hz, since the sensor
is in 10 Hz mode (10 rotations / sec) and the angle is
set to 360º, a full rotation. Each pulse is 10 ms wide.

set_config_param multipurpose_io_mode
OUTPUT_FROM_ENCODER_ANGLE
set_config_param sync_pulse_out_angle 45
reinitialize

The output pulse frequency is 80 Hz, since the sensor
is in 10 Hz mode (10 rotations / sec) and the angle is
set to 45º. Each full rotation will have 8 pulses. Each
pulse is 10 ms wide.

5.3 NMEA Message Format

The Ouster Sensor expects a standard NMEA $GPRMC UART message. Data (called a sentence) is a
simple ASCII string starting with a ‘$’ character and ending with a return character. Fields of the sen-
tence are separated with a ‘,’ character, and the last field (a checksum) is separated by a ‘*’ character.

The max character length of a standard message is 80 characters; however, the Ouster Sensor can
support non-standard messages up to 85 characters (see Example 2 below).

The Ouster Sensor will deliver time in the UDP packet by calculating seconds since 00:00:00 Thursday,
1 January 1970. nmea_leap_seconds by default is 0, meaning this calculation will not take into account
any leap seconds. If nmea_leap_seconds is 0 then the reported time is Unix Epoch time. As of February,
2019 Coordinated Universal Time (UTC) lags behind International Atomic Time (TAI) by an offset of 37

41

seconds (10 seconds from the initial UTC offset when UTC was introduced in 1972 + 27 leap seconds
announced in the intervening years). Therefore, setting nmea_leap_seconds to 37 in February of 2019
would make the timestamps match the TAI standard.

nmea_in_polarity by default is ACTIVE_HIGH. This means that a UART start bit will occur directly after a
falling edge. If using RS-232, the UART signal may be inverted (where a start bit occurs directly after
a rising edge). In this case, nmea_in_polarity should be set to ACTIVE_LOW.

Example 1 Message:

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

→

Field Description

$GPRMC Recommended Minimum sentence C

123519 Fix taken at 12:35:19 UTC

A Status A=active or V=Void

4807.038 Latitude 48 deg 07.038’

N Latitude cardinal reference

01131.000 Longitude 11 deg 31.000’

E Longitude cardinal reference

022.4 Speed over the ground in knots

084.4 Track angle in degrees True

230394 Date - 23rd of March 1994

003.1 Magnetic Variation

W Magnetic cardinal reference

A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator

*6A The checksum data, always begins with *

Example 2 Message:

$GPRMC,042901.00,A,3745.871698,N,12224.825960,W,0.874,327.72,130219,13.39,E,A,V*60

→

42

Field Description

$GPRMC Recommended Minimum sentence C

042901.00 Fix taken at 4:29:01 UTC

A Status A=active or V=Void

3745.871698 Latitude 37 deg 45.871698’

N Latitude cardinal reference

12224.825960 Longitude 12 deg 24.825960’

W Longitude cardinal reference

0.874 Speed over the ground in knots

327.72 Track angle in degrees True

130219 Date - 13th of February 2019

13.39 Magnetic Variation

E Magnetic cardinal reference

A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator

*60 The checksum data, always begins with *

6 Inputs and Interfaces

43

6.1 Web Interface

The sensor homepage can be accessed by typing in the sensor’s address (IPv4, IPv6, or hostname)
in a web browser (http://os-991234567890.local/ where 991234567890 is the serial number). From here
you can see information about the sensor, access documentation, and reset sensor settings.

Figure6.1: The sensor homepage, accessed through its IPv4 link-local address

Dashboard: Contains basic information about the sensor. You can update firmware on this page. See
Updating Firmware for more details.

Diagnostic: Contains diagnostic alert and error information about the sensor for troubleshooting
purposes. For a list of possible alerts and errors, see Alerts and Errors.

Documentation: Contains the HTTP and TCP API guides that are compatible with the version of the
firmware on the sensor. See www.ouster.com for latest hardware and software usermanuals and data
sheets.

Configuration: This tab is a beta feature in FW v2.1.0. It contains a user interface to change sensor
configuration.

Reset Configuration: Resets sensor to factory configurations and settings. Note that this resets any
static IP address given to the sensor.

6.2 Electrical and Mechanical Interface

For information on the mechanical interface, electrical interface, or the Interface Box, please refer to
the Hardware User Manual

44

7 Troubleshooting

7.1 Sensor Homepage and HTTP Server

The sensorHTTP server pagehttp://os-991900123456.local/ has Dashboard, Diagnostics, Documentation
and Reset Configuration buttons:

Dashboard: Current page that lists some basic sensor information, and allows sensor firmware
upgrade.

Diagnostics: Diagnostic information and system journal that can be downloaded and included
when contacting Ouster for service.

Documentation: Sensor TCP and HTTP API Guide

Reset Configuration: Sensor factory configuration that can be reset to if desired. This will erase
any custom configuration that you set on the sensor previously.

7.2 Networking

Many initial problems with the sensor are associated with it not properly being assigned an IP address
by a network switch or DHCP server on a client computer. Check your networking settings, the steps
in Connecting to Sensor, and that all wires are firmly connected if you suspect this problem. Note that
if the sensor is not connected via gigabit Ethernet, it will stop sending data and will output an error
code if it fails to achieve a 1000 Mb/s+ full duplex link. Please see the Networking Guide for detailed
guidance on network setup.

7.3 get_alerts

To check for hardware errors, use the get_alerts TCP command.

If the watchdog is triggered, an alert code will be appended to the end of the response of the TCP
command get_alerts. The sensor has a limited-size buffer that will record the first few alerts detected
by the sensor.

The full list of possible alerts and error messages can be found in Alerts and Errors in the Appendix.

The alerts reported have the following format:

{
"category": "Category of the alert: e.g. OVERTEMP, UDP_TRANSMISSION",
"level": "Level of alert: e.g. NOTICE, WARNING, ERROR",
"realtime": "The timestamp of the alert in nanoseconds",
"active": "Whether the alert is active or not: <true/false>",
"msg": "A description of the alert",
"cursor": "The sequential number of the alert, starting from 0 counting up",

(continues on next page)

45

http://os-991900123456.local

(continued from previous page)

"id": "The hexadecimal identification code of the alert: e.g. 0x01000017",
"msg_verbose": "Any additional verbose description that the alert may present"

}

Example showing active and logged forced temperature sensor failures occurring at timestamps
1569712873477772800, 1569712879991844096, 1569712884968876544 (nanoseconds). The first
logged error then resolves itself at 1569713260229536000. The example has been JSON formatted:

{
"active": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 2,
"id": "0x01000002",
"msg_verbose": ""

}
],
"next_cursor": 4,
"log": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712873477772800",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 0,
"id": "0x01000000",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
(continues on next page)

46

(continued from previous page)

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor":2 ,
"id": "0x01000002",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569713260229536000",
"active": false,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 3,
"id": "0x01000000",
"msg_verbose": ""

}
]

}

7.4 Using Latest Firmware

Upgrading to the latest firmware can often resolve issues found in earlier firmware. The latest firmware
is always found at www.ouster.com/resources. Our Support team is best suited to be able to help you
if you are running the latest firmware.

47

8 HTTP API Reference

HTTP API developer reference guide. This documents the interface for HTTP API and is accessible via
/api/v1 on the sensor hosted HTTP server.

8.1 system/firmware

8.1.1 GET /api/v1/system/firmware

GET 192.0.2.123/api/v1/system/firmware
Get the firmware version of the sensor

GET /api/v1/system/firmware HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Host: 192.0.2.123
content-type: application/json; charset=UTF-8

{
"fw": "ousteros-image-prod-aries-v2.0.0"

}

→
Response JSON Object

fw (string) – Running firmware image name and version.
Status Codes

200 OK – No error

8.2 diagnostics

8.2.1 GET /api/v1/diagnostics/dump

GET 192.0.2.123/api/v1/diagnostics/dump
Get the diagnostics files of the sensor

GET /api/v1/diagnostics/dump HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-disposition: attachment; filename="192.0.2.123_diagnostics-dump_29811b9e-2afc-11eb-ae01-
↪→bc0fa700190c.bin"
content-type: application/octet-stream

{binary data}

48

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

→
Status Codes

200 OK – No error

8.3 system/network

8.3.1 GET /api/v1/system/network

GET 192.0.2.123/api/v1/system/network
Get the system network configuration.

GET /api/v1/system/network HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"carrier": true,
"duplex": "full",
"ethaddr": "bc:0f:a7:00:01:2c",
"hostname": "os-991900123456",
"ipv4": {

"addr": "192.0.2.123/24",
"link_local": "169.254.245.183/16",
"override": null

},
"ipv6": {

"link_local": "fe80::be0f:a7ff:fe00:12c/64"
},
"speed": 1000

}

→
Response JSON Object

carrier (boolean) – State of Ethernet link, true when physical layer is connected.
duplex (string) – Duplex mode of Ethernet link, half or full.
ethaddr (string) – Ethernet hardware (MAC) address.
hostname (string) – Hostname of the sensor, also used when requesting DHCP address and reg-
istering mDNS hostname.
ipv4 (object) – See ipv4 object
ipv6.link_local (string) – Link-local IPv6 address.
speed (integer) – Ethernet physical layer speed in Mbps, should be 1000 Mbps.

Status Codes
200 OK – No error

49

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

8.3.2 GET /api/v1/system/network/ipv4

GET 192.0.2.123/api/v1/system/network/ipv4
Get the IPv4 network configuration.

GET /api/v1/system/network/ipv4 HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"addr": "192.0.2.123/23",
"link_local": "169.254.245.183/16",
"override": null

}

→
Response JSON Object

addr (string) – Current global or private IPv4 address.
link_local (string) – Link-local IPv4 address.
override (string) – Static IP override value, this should match addr. This value will be null when
unset and operating in DHCP or link-localmodes.

Status Codes
200 OK – No error

8.3.3 GET /api/v1/system/network/ipv4/override

GET 192.0.2.123/api/v1/system/network/ipv4/override
Get the current IPv4 static IP address override.

GET /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

null

→
Response JSON Object

string – Static IP override value, this should match addr. This value will be null when unset and
operating in DHCPmode.

Status Codes
200 OK – No error

50

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

8.3.4 PUT /api/v1/system/network/ipv4/override

PUT 192.0.2.123/api/v1/system/network/ipv4/override
Override the default dynamic behavior and set a static IP address.

Note: The sensor will reset the network configuration after a short sub second delay (to allow
for the HTTP response to be sent). After this delay the sensor will only be reachable on the newly
set IPv4 address.

The sensor needs to be reachable either by link-local or dynamic DHCP configuration or by an
existing static IP override from the host reconfiguring the sensor.

Warning: If an unreachable network address is set, the sensor will become unreachable.
Tools such as avahi-browse, dns-sd, or mDNS browser can help with finding a sensor on a
network.

Static IP override should only be used in special use cases. The link-local configuration is
recommended where possible.

PUT /api/v1/system/network/ipv4/override HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

"192.0.2.100/24"

→
Request JSON Object

string – Static IP override value with subnet mask
Response JSON Object

string – Static IP override value that system will set after a short delay.
Status Codes

200 OK – No error

8.3.5 DELETE /api/v1/system/network/ipv4/override

DELETE 192.0.2.123/api/v1/system/network/ipv4/override
Delete the static IP override value and return to dynamic configuration.

Note: The sensor will reset the network configuration after a short sub second delay (to allow
for the HTTP response to be sent). After this delay the sensor will only be reachable on the newly
set IPv4 address.

The sensor may be unreachable for several seconds while a link-local lease is obtained from the
network or client machine.

DELETE /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

51

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

→
Status Codes

204 No Content – No error, no content

8.4 time

8.4.1 GET /api/v1/time

GET 192.0.2.123/api/v1/time
Get the system time configuration for all timing components of the sensor.

GET /api/v1/time HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"ptp": {

"current_data_set": {
"mean_path_delay": 37950,
"offset_from_master": -211488,
"steps_removed": 1

},
"parent_data_set": {
"gm_clock_accuracy": 33,
"gm_clock_class": 6,
"gm_offset_scaled_log_variance": 20061,
"grandmaster_identity": "001747.fffe.700038",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "001747.fffe.700038-1",
"parent_stats": 0

},
"port_data_set": {
"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.00012c-1",
"port_state": "SLAVE",
"version_number": 2

},
"time_properties_data_set": {
"current_utc_offset": 37,
"current_utc_offset_valid": 1,

(continues on next page)

52

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

(continued from previous page)

"frequency_traceable": 1,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 32,
"time_traceable": 1

},
"time_status_np": {
"cumulative_scaled_rate_offset": 0,
"gm_identity": "001747.fffe.700038",
"gm_present": true,
"gm_time_base_indicator": 0,
"ingress_time": 1552413985821448000,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": -211488,
"scaled_last_gm_phase_change": 0

}
},
"sensor": {

"nmea": {
"baud_rate": "BAUD_9600",
"diagnostics": {

"decoding": {
"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {
"bit_count": 1,
"bit_count_unfiltered": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_in": {
"diagnostics": {

"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {
"angle_deg": 360,
"frequency_hz": 1,
"mode": "OFF",
"polarity": "ACTIVE_HIGH",

(continues on next page)

53

(continued from previous page)

"pulse_width_ms": 10
},
"timestamp": {
"mode": "TIME_FROM_INTERNAL_OSC",
"time": 57178.44114677,
"time_options": {

"internal_osc": 57178,
"ptp_1588": 1552413986,
"sync_pulse_in": 1

}
}

},
"system": {

"monotonic": 57191.819600378,
"realtime": 1552413949.3948405,
"tracking": {
"frequency": -7.036,
"last_offset": 5.942e-06,
"leap_status": "normal",
"ref_time_utc": 1552413947.8259742,
"reference_id": "70747000",
"remote_host": "ptp",
"residual_frequency": 0.006,
"rms_offset": 5.358e-06,
"root_delay": 1e-09,
"root_dispersion": 0.000129677,
"skew": 1.144,
"stratum": 1,
"system_time_offset": -2.291e-06,
"update_interval": 2

}
}

}

→
Response JSON Object

string – See sub objects for details.
Status Codes

200 OK – No error

8.4.2 GET /api/v1/time/system

GET 192.0.2.123/api/v1/time/system
Get the operating system time status. These values relate to the sensor operating system clocks,
and not clocks related to hardware timestamp data from the lidar sensor.

GET /api/v1/time/system HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

(continues on next page)

54

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

(continued from previous page)

{
"monotonic": 345083.599570944,
"realtime": 1551814510.730453,
"tracking": {

"frequency": -6.185,
"last_offset": -3.315e-06,
"leap_status": "normal",
"ref_time_utc": 1551814508.1982567,
"reference_id": "70747000",
"remote_host": "ptp",
"residual_frequency": -0.019,
"rms_offset": 4.133e-06,
"root_delay": 1e-09,
"root_dispersion": 0.000128737,
"skew": 1.14,
"stratum": 1,
"system_time_offset": 4.976e-06,
"update_interval": 2

}
}

→
Response JSON Object

monotonic (float) – Monotonic time of operating system. This timestamp never counts back-
wards and is the time since boot in seconds.
realtime (float) – Time in seconds since the Unix epoch, should match wall time if synchronized
with external time source.
tracking (object) – Operating system time synchronization tracking status. See chronyc track-
ing documentation for more information.

Status Codes
200 OK – No error

System tracking fields of interest:

→
Rms_offset Long-term average of the offset value.
System_time_offset Time delta (in seconds) between the estimate of the operating system time and the

current true time.
Last_offset Estimated local offset on the last clock update.
Ref_time_utc UTC Time at which the last measurement from the reference source was processed.
Remote_host This is either ptp if the system is synchronizing to a PTP time source or the address of a

remote NTP server the system has selected if the sensor is connected to the Internet.

55

https://chrony.tuxfamily.org/manual.html#tracking-command
https://chrony.tuxfamily.org/manual.html#tracking-command
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

8.4.3 GET /api/v1/time/ptp

GET 192.0.2.123/api/v1/time/ptp
Get the status of the PTP time synchronization daemon.

Note: See the IEEE 1588-2008 standard for more details on the standard management mes-
sages.

GET /api/v1/time/ptp HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"current_data_set": {

"mean_path_delay": 30110,
"offset_from_master": 224159,
"steps_removed": 1

},
"parent_data_set": {

"gm_clock_accuracy": 33,
"gm_clock_class": 6,
"gm_offset_scaled_log_variance": 20061,
"grandmaster_identity": "001747.fffe.700038",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "001747.fffe.700038-1",
"parent_stats": 0

},
"port_data_set": {

"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.00012c-1",
"port_state": "SLAVE",
"version_number": 2

},
"time_properties_data_set": {

"current_utc_offset": 37,
"current_utc_offset_valid": 1,
"frequency_traceable": 1,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 32,

(continues on next page)

56

https://ieeexplore.ieee.org/document/4579760

(continued from previous page)

"time_traceable": 1
},
"time_status_np": {

"cumulative_scaled_rate_offset": 0,
"gm_identity": "001747.fffe.700038",
"gm_present": true,
"gm_time_base_indicator": 0,
"ingress_time": 1551814546772493800,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": 224159,
"scaled_last_gm_phase_change": 0

}
}

→
Response JSON Object

current_data_set (object) – Result of the PMC GET CURRENT_DATA_SET command.
parent_data_set (object) – Result of the PMC GET PARENT_DATA_SET command.
port_data_set (object) – Result of the PMC GET PORT_DATA_SET command.
time_properties_data_set (object) – Result of the PMC GET TIME_PROPERTIES_DATA_SET command.
time_status_np (object) – Result of the PMC GET TIME_STATUS_NP command. This is a linuxptp
non-portable command.

Status Codes
200 OK – No error

Fields of interest:

→
Current_data_set.offset_from_master Offset from master time source in nanoseconds as calculated

during the last update from master.
Parent_data_set.grandmaster_identity This should match the local grandmaster clock. If this displays

the sensor’s clock identity (derived from Ethernet hardware address) then this indicates the sensor
is not properly synchronized to a grandmaster.

Parent_data_set Various information about the selected master clock.
Port_data_set.port_state This value will be SLAVE when a remote master clock is selected. See par-

ent_data_set for selected master clock.
Port_data_set Local sensor PTP configuration values. Grandmaster clock needs to match these for

proper time synchronization.
Time_properties_data_set PTP properties as given by master clock.
Time_status_np.gm_identity Selected grandmaster clock identity.
Time_status_np.gm_present True when grandmaster has been detected. This may stay true even if

grandmaster goes off-line. Use port_data_set.port_state to determine up-to-date synchronization
status. When this is false then the local clock is selected.

Time_status_np.ingress_time Indicates when the last PTPmessage was received. Units are in nanosec-
onds.

Time_status_np Linux PTP specific diagnostic values. The Red Hat manual provides somemore informa-
tion on these fields

57

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-using_the_ptp_management_client

8.4.4 GET /api/v1/time/ptp/profile

GET 192.0.2.123/api/v1/time/ptp/profile
Get the active PTP profile of the Ouster sensor

GET /api/v1/time/ptp/profile HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

HTTP/1.1 200 OK
content-length: 9
content-type: application/json; charset=UTF-8

"gptp"

→
Response JSON Object

string – Active PTP profile.
Status Codes

200 OK – No error

8.4.5 PUT /api/v1/time/ptp/profile

PUT 192.0.2.123/api/v1/time/ptp/profile
Change the PTP profile of the Ouster sensor

PUT /api/v1/time/ptp/profile HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

"gptp"

HTTP/1.1 200 OK
content-length: 9
content-type: application/json; charset=UTF-8

"gptp"

→
Request JSON Object

string – PTP profile to be activated, valid options are "default", "gptp", and "automotive-slave"
Response JSON Object

string – Active PTP profile.
Status Codes

200 OK – No error

58

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

8.4.6 GET /api/v1/time/sensor

GET 192.0.2.123/api/v1/time/sensor
Get the lidar sensor time status. These values relate to the hardware timestamping mechanism
of the sensor.

GET /api/v1/system/time/sensor HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"nmea": {

"baud_rate": "BAUD_9600",
"diagnostics": {
"decoding": {

"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {

"bit_count": 1,
"bit_count_unfiltered": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_in": {

"diagnostics": {
"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {

"angle_deg": 360,
"frequency_hz": 1,
"mode": "OFF",
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

},
"timestamp": {

"mode": "TIME_FROM_INTERNAL_OSC",
"time": 57178.44114677,
"time_options": {

(continues on next page)

59

(continued from previous page)

"internal_osc": 57178,
"ptp_1588": 1552413986,
"sync_pulse_in": 1

}
}

}

For more information on these parameters refer to the get_time_info TCP command.

60

9 TCP API

9.1 Querying Sensor Info and Intrinsic Calibration

The sensor can be queried and configured using a simple plaintext protocol over TCP on port 7501.

An example session using the unix netcat utility is shown below. Note: “xxx” refers to the sensor serial
number. The hostname of the sensor can look like “os-xxx” or “os1-xxx”.

$ nc os-991900123456.local 7501
get_sensor_info

{"prod_line": "OS-1-128", "prod_pn": "840-102145-C", "prod_sn": "991900123456", "base_pn": "830-101845-E",
↪→"base_sn": "102005001362", "image_rev": "ousteros-image-prod-aries-v2.0.0-2020129230129", "build_rev":
↪→"v2.0.0", "proto_rev": "v1.1.1", "build_date": "2020-10-20T18:58:51Z", "status": "RUNNING"}

A sensor may have one of the following statuses:

Status Description

INITIALIZ-
ING

When the sensor is booting and not yet outputting data.

WARMUP Sensor has gone into thermal warmup state.

UPDATING When the sensor is updating the FPGA firmware on the first reboot after a firmware
upgrade.

RUNNING When the sensor has reached the final running state where it can output data.

STANDBY The sensor has been configured into a low-power state where sensor is on but not
spinning

ERROR Check error codes in the errors field for more information

UNCONFIG-
URED

An error with factory calibration that requires a manual power cycle or reboot.

If the sensor is in an ERROR or UNCONFIGURED state, please contact Ouster support with the diagnostic file
found at http://os-9919xxxxxxxx/diag for support.

The following commands will return sensor configuration and calibration information:

61

mailto:support@ouster.io?subject=Help%20with%20OS1&body=Hello,%0D%0A%0D%0AI'm%20having%20trouble%20with%20my%20OS1.%20I%20have%20attached%20the%20two%20diagnostic%20files%20and%20relevant%20photos%20of%20my%20setup%20here.
http://os-9919xxxxxxxx/diag

Table9.1: Sensor Configuration and Calibration

Command Description Response Example

get_config_param
<active/staged>

Returns all active or staged
JSON-formatted sensor
configuration. Note: The
get_config_param active
command is functionally
the same as the deprecated
command get_config_txt.

{
"udp_ip": "192.0.2.123",
"udp_dest": "192.0.2.123",
"udp_port_lidar": 7502,
"udp_port_imu": 7503,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"nmea_in_polarity": "ACTIVE_HIGH",
"nmea_ignore_valid_char": 0,
"nmea_baud_rate": "BAUD_9600",
"nmea_leap_seconds": 0,
"multipurpose_io_mode": "OFF",
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"sync_pulse_out_frequency": 1,
"sync_pulse_out_angle": 360,
"sync_pulse_out_pulse_width": 10,
"auto_start_flag": 1,
"operating_mode": "NORMAL",
"lidar_mode": "1024x10",
"azimuth_window": [0, 360000],
"phase_lock_enable": false,
"phase_lock_offset": 0

}

get_sensor_info Returns JSON-formatted
sensor metadata: serial
number, hardware and soft-
ware revision, and sensor
status.

{
"prod_line": "OS-1-128",
"prod_pn": "840-102145-C",
"prod_sn": "991900123456",
"base_pn": "830-101845-E",
"base_sn": "102005001362",
"image_rev": "ousteros-image-prod-aries-v2.0.

↪→0-2020129230129",
"build_rev": "v2.0.0",
"proto_rev": "v1.1.1",
"build_date": "2020-10-20T18:58:51Z",
"status": "RUNNING"}

continues on next page

62

Table 9.1 – continued from previous page

Command Description Response Example

get_time_info Returns JSON-formatted
sensor timing configuration
and status of udp timestamp,
sync_pulse_in, and multipur-
pose_io.

{
"timestamp": {

"time": 302.96139565999999,
"mode": "TIME_FROM_INTERNAL_OSC",
"time_options": {

"sync_pulse_in": 0,
"internal_osc": 302,
"ptp_1588": 309

}
},
"sync_pulse_in": {

"locked": 0,
"diagnostics": {

"last_period_nsec": 0,
"count_unfiltered": 1,
"count": 0

},
"polarity": "ACTIVE_HIGH"

},
"multipurpose_io": {

"mode": "OFF",
"sync_pulse_out": {

"pulse_width_ms": 10,
"angle_deg": 360,
"frequency_hz": 1,
"polarity": "ACTIVE_HIGH"

},
"nmea": {

"locked": 0,
"baud_rate": "BAUD_9600",
"diagnostics": {

"io_checks": {
"bit_count": 1,
"bit_count_unfiltered": 0,
"start_char_count": 0,
"char_count": 0

},
"decoding": {

"last_read_message": "",
"date_decoded_count": 0,
"not_valid_count": 0,
"utc_decoded_count": 0

}
},
"leap_seconds": 0,
"ignore_valid_char": 0,
"polarity": "ACTIVE_HIGH"

}
}

}

continues on next page

63

Table 9.1 – continued from previous page

Command Description Response Example

get_beam_intrinsics Returns JSON-formatted
beam altitude and azimuth
offsets, in degrees. Length of
arrays is equal to the number
of channels in the sensor.
Also returns distance be-
tween lidar origin and beam
origin in mm, to be used for
point cloud calculations.

{
"lidar_origin_to_beam_origin_mm": 15.806,
"beam_altitude_angles": [

21.4764,
21.1679,
20.8583,
"...",
-20.8583,
-21.1679,
-21.4764

],
"beam_azimuth_angles": [

4.2521,
1.4197
"...",
-1.4197,
-4.2521

]
}

get_imu_intrinsics Returns JSON-formatted
IMU transformation matrix
needed to transform to the
Sensor Coordinate Frame.

{
"imu_to_sensor_transform": [

1,
0,
0,
6.253,
0,
1,
0,
-11.775,
0,
0,
1,
7.645,
0,
0,
0,
1

]
}

continues on next page

64

Table 9.1 – continued from previous page

Command Description Response Example

get_lidar_intrinsics Returns JSON-formatted
lidar transformation matrix
needed to transform to the
Sensor Coordinate Frame.

{
"lidar_to_sensor_transform": [

-1,
0,
0,
0,
0,
-1,
0,
0,
0,
0,
1,
36.18,
0,
0,
0,
1

]
}

continues on next page

65

Table 9.1 – continued from previous page

Command Description Response Example

get_alerts
<START_CURSOR>

Returns JSON-formatted
sensor diagnostic informa-
tion.
The log list contains alerts
when they were activated or
deactivated. An optional
START_CURSOR argument spec-
ifies where the log should
start.
The active list contains all
currently active alerts.

{
"log": [

{
"category": "UDP_TRANSMISSION",
"msg": "Received an unknown error�

↪→when trying to send lidar data UDP packet;�
↪→closing socket.",

"realtime": "1569631015375767040",
"cursor": 0,
"id": "0x01000017",
"active": true,
"msg_verbose": "192.0.2.123:7502",
"level": "WARNING"

},
{

"category": "UDP_TRANSMISSION",
"msg": "Received an unknown error�

↪→when trying to send IMU UDP packet; closing�
↪→socket.",

"realtime": "1569631015883802368",
"cursor": 1,
"id": "0x0100001a",
"active": false,
"msg_verbose": "192.0.2.123:7503",
"level": "WARNING"

}
],
"active": [

{
"category": "UDP_TRANSMISSION",
"msg": "Received an unknown error�

↪→when trying to send lidar data UDP packet;�
↪→closing socket.",

"realtime": "1569631015375767040",
"cursor": 0,
"id": "0x01000017",
"active": true,
"msg_verbose": "192.0.2.123:7502",
"level": "WARNING"

},
],
"next_cursor": 2

}

continues on next page

66

Table 9.1 – continued from previous page

Command Description Response Example

get_lidar_data_format Returns JSON-formatted re-
sponse that describes the
structure of a lidar packet.
columns_per_frame: Number of
measurement columns per
frame. This can be 512, 1024,
or 2048, depending upon the
set lidar mode.
columns_per_packet: Number
of measurement blocks con-
tained in a single lidar packet.
Currently in v2.0.0 and ear-
lier, this is 16.
pixel_shift_by_row: Offset in
terms of pixel count. Can
be used to destagger image.
Varies by lidar mode. Length
of this array is equal to the
number of channels of the
sensor.
pixels_per_column: Number of
channels of the sensor.
column_window: Index of
measurement blocks that
are active. Default is [0,
lidar_mode-1], e.g. [0,1023].
If there is azimuth window
set, this parameter will re-
flect which measurement
blocks of data are within the
region of interest.
Note: This command only
works when the sensor is in
“RUNNING” status.

{
"columns_per_frame": 1024,
"columns_per_packet": 16,
"pixel_shift_by_row": [

18,
12,
6,
0,
"...",
18,
12,
6,
0

],
"pixels_per_column": 128,
"column_window": [0, 1023]

}

9.2 Querying Active or Staged Parameters

Sensor configurations and operating modes can also be queried over TCP. Below is the command
format:

→

get_config_param active <parameter> will return the current active configuration parameter values.

get_config_param staged <parameter>will return the parameter values that will take place after issuing a reinitial-
ize command or after sensor reboot.

67

Warning: The command get_config_txt is deprecated and superseded by get_config_param active,
which provides the same response. get_config_txt will be removed in a future firmware.

An example session using the unix netcat utility is shown below:

$ nc os-991900123456 7501
get_config_param active lidar_mode
1024x10

The following commands will return sensor active or staged configuration parameters:

Table9.2: Sensor Configurations

get_config_param Command Description Response

udp_dest Returns the destination to which
the sensor sends UDP traffic.
Note: udp_ip is the deprecated
parameter name whose value
will always be the same as
udp_dest.

"" (default)

udp_port_lidar Returns the port number of lidar
UDP data packets.

7502 (default)

udp_port_imu Returns the port number of IMU
UDP data packets.

7503 (default)

sync_pulse_in_polarity Returns the polarity of the
SYNC_PULSE_IN input,
which controls polarity of
SYNC_PULSE_IN pin when
timestamp_mode is set in
TIME_FROM_SYNC_PULSE_IN. Use
ACTIVE_HIGH if PPS is active high,
idle low.

Either ACTIVE_HIGH (default) or AC-
TIVE_LOW

sync_pulse_out_polarity Returns the polarity of
SYNC_PULSE_OUT output, if
the sensor is using this for time
synchronization.

Either ACTIVE_HIGH or ACTIVE_LOW (de-
fault)

sync_pulse_out_frequency Returns the output
SYNC_PULSE_OUT pulse rate in
Hz.

1 (default)

continues on next page

68

Table 9.2 – continued from previous page

get_config_param Command Description Response

sync_pulse_out_angle Returns the angle in terms
of degrees that the sen-
sor traverses between each
SYNC_PULSE_OUT pulse. E.g. a
value of 180 means a sync pulse
is sent out every 180° for a total
of two pulses per revolution and
angular frequency of 20 Hz if the
sensor is 1024x10 Hz lidar mode.

360 (default)

sync_pulse_out_pulse_widthReturns the output
SYNC_PULSE_OUT pulse width
in ms.

10 (default)

nmea_in_polarity Returns the polarity of NMEA
UART input messages. See Time
Synchronization section in sen-
sor user manual for NMEA use
case. Use ACTIVE_HIGH if UART is
active high, idle low, and start bit
is after a falling edge.

Either ACTIVE_HIGH (default) or AC-
TIVE_LOW

nmea_ignore_valid_char Returns 0 if NMEA UART input
$GPRMCmessages should be ig-
nored if valid character is not
set, and 1 if messages should be
used for time syncing regardless
of the valid character.

Either 0 (default) or 1

nmea_baud_rate Returns BAUD_9600 (default) or
BAUD_115200 for the expected
baud rate the sensor is attempt-
ing to decode for NMEA UART
input $GPRMC messages.

Either BAUD_9600 or BAUD_115200

nmea_leap_seconds Returns the number of leap
seconds that will be added to
the UDP timestamp when calcu-
lating seconds since 00:00:00
Thursday, 1 January 1970. For
Unix Epoch time, this should be
set to 0.

Either 0 (default) or a positive integer

azimuth_window Returns the visible region of in-
terest of the sensor in millide-
grees. Only data within the spec-
ified bounds of the region of in-
terest is sent from the sensor.

[0,360000] (defaults to an azimuth
window of 360°)

continues on next page

69

Table 9.2 – continued from previous page

get_config_param Command Description Response

phase_lock_enable Returnswhether phase locking is
enabled.

Either false (default) or true

phase_lock_offset Returns the angle in the Lidar
Coordinate Frame that sensors
are locked to in millidegrees if
phase locking is enabled.

Integer between 0 and 360000 inclusive

Table9.3: Sensor Modes

Command Command Description Response

lidar_mode Returns a string indicating the hor-
izontal resolution and rotation fre-
quency [Hz].

One of 512x10, 1024x10, 2048x10,
512x20, or 1024x20

timestamp_mode Returns the method used to times-
tamp measurements.

One of TIME_FROM_INTERNAL_OSC,
TIME_FROM_PTP_1588, or
TIME_FROM_SYNC_PULSE_IN

multipurpose_io_mode Returns the configured mode of the
MULTIPURPOSE_IO pin. See Time
Synchronization section in sensor
user manual for a detailed descrip-
tion of each option.

One of OFF (default),
INPUT_NMEA_UART, OUT-
PUT_FROM_INTERNAL_OSC, OUT-
PUT_FROM_SYNC_PULSE_IN, OUT-
PUT_FROM_PTP_1588, or OUT-
PUT_FROM_ENCODER_ANGLE

operating_mode Returns the operating mode that
the sensor is in. NORMAL is the
default value. STANDBY is a low
power (5W) operating mode.
Note: auto_start_flag is the dep-
recated parameter name where
auto_start_flag 0 is equivalent
to operating_mode STANDBY and
auto_start_flag 1 is equivalent to
operating_mode NORMAL.

Either NORMAL (default) or
STANDBY (low power/standby
state)

70

9.3 Setting Configuration Parameters

set_config_param <parameter> <value> will set new values for configuration parameters, which will take
effect after issuing the reinitialize command or after sensor reset.

reinitialize will reinitialize the sensor so the staged values of the parameters will take effect imme-
diately.

save_config_params will write new values of active parameters into a configuration file, so they will
persist after sensor reset. In order to permanently change a parameter in the configuration file, first
use set_config_param to update the parameter in a staging area, then use reinitialize to make that
parameter active. Only after the parameter is made active will save_config_params capture it to persist
after reset.

Warning: The command write_config_txt will be deprecated in a future firmware. The command
save_config_params provides the same response.

set_udp_dest_auto will automatically determine the sender’s IP address at the time the command was
sent, and set it as the destination of UDP traffic. This takes effect after issuing a reinitialize com-
mand. Using this command has the same effect as using set_config_param udp_dest <ip address>.

An example session using the unix netcat utility is shown below.

Note: In the example below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

$ nc os-991900123456 7501
set_config_param lidar_mode 512x20
-set_config_param
set_udp_dest_auto
-set_udp_dest_auto
reinitialize
-reinitialize
save_config_params
-save_config_params

The following commands will set sensor configuration parameters:

71

Table9.4: Setting Config Params

set_config_param Command Description Response

udp_dest <destination> Set the <destination> to which the sen-
sor sends UDP traffic. On boot, the
sensor will not output data until this is
set. If the IP address is not known,
this can also be accomplished with
the set_udp_dest_auto command (details
above). The sensor supports unicast,
IPv4 broadcast (255.255.255.255), IPv4
multicast (239.x.x.x), and IPv6 multicast
(ff02::01) addresses. Note: udp_ip is
the deprecated parameter name. How-
ever during the deprecation phase, either
udp_ip or udp_destmay be used. When ei-
ther one is updated, the other parameter
value will be updated to match upon set-
ting the parameter value.

set_config_param on suc-
cess, error: otherwise

udp_port_lidar <port> Set the <port> on udp_dest to which lidar
data will be sent (7502, default).

set_config_param on suc-
cess, error: otherwise

udp_port_imu <port> Set the <port> on udp_dest to which IMU
data will be sent (7503, default).

set_config_param on suc-
cess, error: otherwise

sync_pulse_in_polarity
<ACTIVE_HIGH/ACTIVE_LOW>

Set the polarity of SYNC_PULSE_IN
input, which controls polar-
ity of SYNC_PULSE_IN pin
when timestamp_mode is set in
TIME_FROM_SYNC_PULSE_IN.

set_config_param on suc-
cess, error: otherwise

sync_pulse_out_polarity
<ACTIVE_HIGH/ACTIVE_LOW>

Set the polarity of SYNC_PULSE_OUT
output, if the sensor is set as the master
sensor used for time synchronization.

set_config_param on suc-
cess, error: otherwise

sync_pulse_out_frequency
<rate in Hz>

Set output SYNC_PULSE_OUT rate.
Valid inputs are integers >0 Hz, but also
limited by the criteria described in the
Time Synchronization section of the
Software User Manual.

set_config_param on suc-
cess, error: otherwise

sync_pulse_out_angle <angle
in deg>

Set output SYNC_PULSE_OUT rate de-
fined by rotation angle. E.g. a value of
180 means a sync pulse is sent out every
180° for a total of two pulses per revolu-
tion and angular frequency of 20Hz if the
sensor is 1024x10Hz lidarmode. Valid in-
puts are integers between 0 and 360 in-
clusive but also limited by the criteria de-
scribed in the Time Synchronization sec-
tion of Software User Manual.

set_config_param on suc-
cess, error: otherwise

continues on next page

72

Table 9.4 – continued from previous page

set_config_param Command Description Response

sync_pulse_out_pulse_width
<width in ms>

Set output SYNC_PULSE_OUT pulse
width in ms, in 1 ms increments. Valid
inputs are integers greater than 0 ms,
but also limited by the criteria described
in the Time Synchronization section of
Software User Manual.

set_config_param on suc-
cess, error: otherwise

nmea_in_polarity
<ACTIVE_HIGH/ACTIVE_LOW>

Set the polarity of NMEA UART input
$GPRMC messages. See Time Synchro-
nization section in sensor user manual
for NMEA use case. Use ACTIVE_HIGH if
UART is active high, idle low, and start bit
is after a falling edge.

set_config_param on suc-
cess, error: otherwise

nmea_ignore_valid_char <1/
0>

Set 0 if NMEA UART input $GPRMC mes-
sages should be ignored if valid charac-
ter is not set, and 1 if messages should be
used for time syncing regardless of the
valid character.

set_config_param on suc-
cess, error: otherwise

nmea_baud_rate <rate in
baud/s>

Set BAUD_9600 (default) or BAUD_115200 for
the expected baud rate the sensor is at-
tempting to decode for NMEA UART in-
put $GPRMC messages.

set_config_param on suc-
cess, error: otherwise

nmea_leap_seconds <s> Set an integer number of leap seconds
that will be added to the UDP times-
tamp when calculating seconds since
00:00:00 Thursday, 1 January 1970. For
Unix Epoch time, this should be set to 0.

set_config_param on suc-
cess, error: otherwise

azimuth_window
<[min_bound_millideg,
max_bound_millideg]>

Set the visible region of interest of
the sensor in millidegrees. Only data
from within the specified azimuth win-
dow bounds is sent.

set_config_param on suc-
cess, error: otherwise

phase_lock_enable <true/
false>

Set whether phase locking is enabled.
See Software User Manual for more de-
tails on using phase lock.

set_config_param on suc-
cess, error: otherwise

phase_lock_offset <angle in
millideg>

Set the angle in the Lidar Coordinate
Frame that sensors are locked to in mil-
lidegrees if phase locking is enabled. An-
gle is traversed at the top of the second.

set_config_param on suc-
cess, error: otherwise

73

Table9.5: Setting Modes

set_config_param Command Description Response

lidar_mode <mode> Set the horizontal resolution
and rotation rate of the sensor.
Valid modes are 512x10, 1024x10,
2048x10, 512x20, and 1024x20.
The effective range of the sen-
sor is increased by 15-20% for
every halving of the number of
points gathered e.g. 512x10
has 15-20% longer range than
512x20.

set_config_param on success,
error: otherwise

timestamp_mode <mode> Set the method used
to timestamp measure-
ments. Valid modes are
TIME_FROM_INTERNAL_OSC,
TIME_FROM_SYNC_PULSE_IN, or
TIME_FROM_PTP_1588.

set_config_param on success,
error: otherwise

multipurpose_io_mode <mode> Configure the mode of the
MULTIPURPOSE_IO pin. Valid
modes are OFF, INPUT_NMEA_UART,
OUTPUT_FROM_INTERNAL_OSC,
OUTPUT_FROM_SYNC_PULSE_IN,
OUTPUT_FROM_PTP_1588, or OUT-
PUT_FROM_ENCODER_ANGLE.

set_config_param on success,
error: otherwise

operating_mode <NORMAL/STANDBY> Set NORMAL to put the sensor
into a normal operating mode
or STANDBY to put the sensor
into a low power (5W) oper-
ating mode where the motor
does not spin and lasers do not
fire. Note: auto_start_flag <1/
0> is the deprecated parameter
name where auto_start_flag 0
is equivalent to operating_mode
STANDBY and auto_start_flag 1
is equivalent to operating_mode
NORMAL. However, during the
deprecation phase, either op-
erating_mode or auto_start_flag
may be used. When either one
is updated, the other param-
eter value will be updated to
match upon setting the param-
eter value.

set_config_param on success,
error: otherwise

74

Table9.6: Reinitialize, Write Configuration, and Auto Destination UDP

Command Command Description Response

reinitialize or reinit Restarts the sensor. Changes to
lidar, multipurpose_io, and times-
tamp modes will only take effect af-
ter reinitialization.

reinitialize or reinit on suc-
cess

save_config_params Makes all current parameter set-
tings persist after reboot.

save_config_params on success

set_udp_dest_auto Set the destination of UDP traffic to
the destination address that issued
the command.

set_udp_dest_auto on success

75

10 API Changelog

→

Version v1.6.0

Date 2018-08-16

Description

Add get_sensor_info command gives prod_line info.

→

Version v1.7.0

Date 2018-09-05

Description

No TCP command change.

→

Version v1.8.0

Date 2018-10-11

Description

get_sensor_info command gives INITIALIZING, UPDATING, RUNNING, ERROR and UNCONFIGURED status.

→

Version v1.9.0

Date 2018-10-24

Description

No TCP command change.

→

Version v1.10.0

Date 2018-12-11

Description

Remove all references of pulse_mode.

Add get_alerts, pps_rate and pps_angle usage commands and expected output.

76

Remove TCP commands prior to v1.5.1.

→

Version v1.11.0

Date 2019-03-25

Description

Add section on HTTP API commands.

TCP Port now hard-coded to 7501; port is no longer configurable.

Update to SYNC_PULSE_IN andMULTIPURPOSE_IO interface and configuration parameters (see de-
tails below).

Configuration parameters name changes:

pps_in_polarity changed to sync_pulse_in_polarity

pps_out_mode changed to multipurpose_io_mode

pps_out_polarity changed to sync_pulse_out_polarity

pps_rate changed to sync_pulse_out_frequency

pps_angle changed to sync_pulse_out_angle

pps_pulse_width changed to sync_pulse_out_pulse_width

New configuration parameters:

nmea_in_polarity

nmea_ignore_valid_char

nmea_baud_rate

nmea_leap_seconds

Configuration parameters option changes:

timestamp_mode

TIME_FROM_PPS changed to TIME_FROM_SYNC_PULSE_IN

multipurpose_io_mode (formerly pps_out_mode)

OUTPUT_PPS_OFF changed to OFF

OUTPUT_FROM_PPS_IN_SYNCED changed to OUTPUT_FROM_SYNC_PULSE_IN

Removed OUTPUT_FROM_PPS_DEFINED_RATE

Added INPUT_NMEA_UART

TCP command changes:

Added commands:

get_time_info

Changed commands:

77

get_config_txt (returned dictionary keys match parameter changes)

Removed commands:

set_pps_in_polarity

get_pps_out_mode

set_pps_out_mode

get_timestamp_mode

set_timestamp_mode

Polarity changes:

sync_pulse_in_polarity was corrected to match parameter naming.

sync_pulse_out_polarity was corrected to match parameter naming.

→

Version v1.12.0

Date

Description

Corrected IMU axis directions to match Sensor Coordinate Frame.

Sensor Coordinate Frame section of sensor user manual for details on sensor coordinate frame. This
change inverts IMU X, Y, and Z axis relative to v1.11.0.

→

Version v1.13.0

Date

Description

Add TCP command set_udp_dest_auto

TCP command get_alerts, includes more descriptive errors for troubleshooting

Packet Status now called Azimuth Data Block Status and is calculated differently

Packets with bad CRC are now dropped upstream and replaced with 0 padded packets to ensure all
packets are sent for each frame.

Return format of TCP command get_time_info updated

Removed reference to window_rejection_enable

→

Version v2.0.0

Date 2020-11-20

78

Added

Add TCP command get_lidar_data_format.

Add in azimuth_window documentation.

Add in commands phase_lock_enable and phase_lock_offset and their documentation.

Add in verbose responses to parameter validation for TCP commands.

Add in command save_config_params which supersedes the deprecated command
write_config_txt, which will be deleted in future firmware.

Add in command get_config_param active in favor of the deprecated command
get_config_txt, which will be deleted in future firmware.

Add in new STANDBY and WARMUP statuses.

Add in parameter operating_mode in favor of the deprecated parameter auto_start_flag,
which will be deleted in future firmware.

Add in parameter udp_dest in favor of the deprecated parameter udp_ip, whichwill be deleted
in future firmware. This is to be consistent with the set_udp_dest_auto parameter and to
reflect that valid values can be hostnames in addition to ip addresses.

Add in HTTP GET api/v1/diagnostic/dump endpoint.

Removed

Remove deprecated TCP command set_udp_ip.

Changed

TCP command get_beam_intrinsics now returns: 1) lidar_origin_to_beam_origin_mm, dis-
tance between the lidar origin and the beam origin in millimeters; and 2) beam altitude
and azimuth angle arrays with padded zeros removed.

azimuth_window parameter now in terms of millidegrees and implemented CCW.

Deprecate api/v1/system/time/ HTTP API and its sub-APIs and replace with api/v1/time/

→

Version v2.1.0

Date 2021-05-21

Added

Add configuration parameter signal_multiplier and its documentation

Removed

Remove deprecated TCP command set_data_dst_ip

Remove deprecated TCP command get_data_dst_ip

Remove deprecated TCP command set_udp_port_lidar

Remove deprecated TCP command set_udp_port_imu

Remove deprecated TCP command get_lidar_mode

79

Remove deprecated TCP command set_lidar_mode

Remove deprecated TCP command get_config_file_path

Remove deprecated TCP command set_auto_start_flag

Remove deprecated TCP command get_auto_start_flag

Remove deprecated TCP command get_watchdog_status

80

11 Alerts and Errors

The sensor provides alerts and error messages that are accessible through the Diagnostics tab on the
sensor homepage or via the get_alerts TCP command.

11.1 Table of All Alerts and Errors

All possible alerts and errors that the sensor can provide are listed below. Where appropriate, the
message from the sensor aims to help the user diagnose and fix the issue themselves.

Table11.1: Alerts and Errors in v2.0.0

ID Category Level Alert Message

0 UNKNOWN ERROR An unknown error has occurred; please contact
Ouster at https://ouster.com/tech-support.

1000000 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000001 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000002 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000003 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000004 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000005 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000006 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000007 UNDERTEMP ERROR Unit internal temperature too low; please see user
guide for heat sinking requirements.

1000008 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

1000009 OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

100000A OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

continues on next page

81

https://ouster.com/tech-support

Table 11.1 – continued from previous page

ID Category Level Alert Message

100000B OVERTEMP ERROR Unit internal temperature too high; please see user
guide for heat sinking requirements.

100000C INTERNAL_COMM WARN-
ING

Unit has experienced an internal COMM warning.

100000D INTERNAL_COMM WARN-
ING

Unit has experienced an internal COMM warning.

100000E SHOT_LIMITING NOTICE Temperature is high enough where shot limiting
may be engaged; please see user guide for heat
sinking requirements.

100000F SHOT_LIMITING WARN-
ING

Shot limiting mode is active. Laser power is par-
tially attenuated; please see user guide for heat
sinking requirements.

1000010 INTERNAL_FW ERROR Unit has experienced an internal error; please con-
tact Ouster at https://ouster.com/tech-support.

1000011 ETHER-
NET_LINK_BAD

WARN-
ING

Ethernet link bad, please check network switch
and harnessing can support 1 Gbps Ethernet.

1000012 INTERNAL_COMM WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

1000013 INTERNAL_COMM WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

1000014 INTERNAL_COMM WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

1000015 UDP_TRANSMISSIONWARN-
ING

Client machine announced it is not reachable on
the provided lidar data port; check that udp_dest
and udp_port_lidar configured on the sensor
matches client IP and port.

1000016 UDP_TRANSMISSIONWARN-
ING

Could not send lidar data UDP packet to host;
check that network is up.

1000017 UDP_TRANSMISSIONWARN-
ING

Received an unknown error when trying to send li-
dar data UDP packet; closing socket.

1000018 UDP_TRANSMISSIONWARN-
ING

Client machine announced it is not reachable on
the provided not reachable on IMU data port;
check that udp_dest and udp_port_imu config-
ured on the sensor matches client IP and port.

1000019 UDP_TRANSMISSIONWARN-
ING

Could not send IMU UDP packet to host; check
that network is up.

100001A UDP_TRANSMISSIONWARN-
ING

Received an unknown error when trying to send
IMU UDP packet; closing socket.

continues on next page

82

https://ouster.com/tech-support

Table 11.1 – continued from previous page

ID Category Level Alert Message

100001B INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100001C INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100001D INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100001E INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100001F INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000020 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000021 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000022 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000023 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000024 STARTUP ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000025 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000026 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000027 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000028 STARTUP WARN-
ING

Unit has experienced an internal warning during
startup and is restarting.

1000029 STARTUP WARN-
ING

Unit has experienced an internal warning during
startup and is restarting.

100002A STARTUP WARN-
ING

Unit has experienced an internal warning during
startup and is restarting.

100002B STARTUP WARN-
ING

Unit has experienced an internal warning during
startup and is restarting.

continues on next page

83

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 11.1 – continued from previous page

ID Category Level Alert Message

100002C STARTUP WARN-
ING

Unit has experienced an internal warning during
startup and is restarting.

100002D STARTUP WARN-
ING

Unit has experienced an internal warning during
startup and is restarting.

100002E INPUT_VOLTAGE WARN-
ING

Input voltage is close to being too low. Raise volt-
age immediately.

100002F INPUT_VOLTAGE ERROR Input voltage is too low. Unit shutting down.

1000030 INPUT_VOLTAGE WARN-
ING

Input voltage is close to being too high. Lower volt-
age immediately.

1000031 INPUT_VOLTAGE ERROR Input voltage is too high. Unit shutting down.

1000032 UDP_CONNECT WARN-
ING

Couldn’t open lidar UDP socket; please contact
Ouster at https://ouster.com/tech-support.

1000033 UDP_CONNECT WARN-
ING

Couldn’t resolve IP address; check network and
udp_dest.

1000034 UDP_CONNECT WARN-
ING

Invalid UDP port number; check network and
udp_port_lidar.

1000035 UDP_CONNECT WARN-
ING

Couldn’t reach destination client; verify cabling
and network address configuration.

1000036 UDP_CONNECT WARN-
ING

Couldn’t open imu UDP socket; please contact
Ouster at https://ouster.com/tech-support.

1000037 UDP_CONNECT WARN-
ING

Couldn’t resolve IP address; check network and
udp_dest.

1000038 UDP_CONNECT WARN-
ING

Invalid UDP port number; check network and
udp_port_imu.

1000039 UDP_CONNECT WARN-
ING

Couldn’t reach destination client; verify cabling
and network address configuration.

100003A SHOT_LIMITING WARN-
ING

Shot limitingmode at maximum and no longer has
thermal control authority.

100003B INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100003C INTERNAL_FAULT ERROR Internal fault detected; unit will restart to attempt
recovery.

100003D INTERNAL_FAULT ERROR Internal fault detected; unit will restart to attempt
recovery.

100003E INTERNAL_FAULT ERROR Internal fault detected; unit will restart to attempt
recovery.

continues on next page

84

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 11.1 – continued from previous page

ID Category Level Alert Message

100003F INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000040 INTERNAL_FAULT ERROR After restart attempts, unit did not recover. Going
to error state.

1000041 INTERNAL_COMM WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

1000042 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000043 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000044 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000045 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000046 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000047 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000048 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

1000049 INTERNAL_FW ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100004A STARTUP ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100004B STARTUP ERROR Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

100004C INTERNAL_FAULT ERROR Internal fault detected; unit going to error stop
state.

100004D INTERNAL_FAULT ERROR Internal fault detected; unit going to error stop
state.

100004E WARMUP_ISSUE WARN-
ING

Sensor warmup process is taking longer than ex-
pected; please ensure sensor is thermally con-
strained per requirements.

100004F WARMUP_ISSUE WARN-
ING

Sensor warmup process is taking longer than ex-
pected; please ensure sensor is thermally con-
strained per requirements.

continues on next page

85

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 11.1 – continued from previous page

ID Category Level Alert Message

1000050 MOTOR_CONTROL WARN-
ING

The phase lock offset error has exceeded the
threshold.

1000051 MOTOR_CONTROL ERROR The phase lock control failed to achieve a lock
multiple times; please contact Ouster at https://
ouster.com/tech-support.

1000052 CONFIG_INVALID ERROR Configuration value is invalid or out of bounds.

1000053 WARMUP_ISSUE ERROR Sensor warmup process has failed.

1000054 INTERNAL_FAULT NOTICE Unexpected hardware configuration detected.

1000055 UDP_TRANSMISSIONWARN-
ING

Unit has experienced a packet drop rate above
normal threshold. Please check that the network
has at least 1000 Mbps connection. Common
causes of this notice may be 100 or 10 Mbps net-
work connections.

1000056 INTERNAL_FAULT ERROR Internal fault detected; unit will restart to attempt
recovery.

1000057 OVERTEMP WARN-
ING

Warning: sensor temperature is too high; sensor
could have degraded range performance.

1000058 OVERTEMP ERROR Warning: sensor temperature is too high; unit go-
ing to error stop state.

1000059 INTERNAL_FAULT WARN-
ING

Internal fault detected; unit will restart to attempt
recovery.

100005A INTERNAL_FAULT WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

100005B INTERNAL_FAULT WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

100005C INTERNAL_FAULT WARN-
ING

Unit has experienced an internal COMM warning:
some measurements may have been skipped.

100005D INTERNAL_FAULT WARN-
ING

Internal fault detected; unit going to error stop
state.

100005E INTERNAL_FAULT WARN-
ING

Unit has experienced an overcurrent event; unit
will restart to attempt recovery.

100005F IO_CONNECTION WARN-
ING

Unit has stopped receiving SYNC_PULSE_IN sig-
nals and is configured to expect them. Check elec-
trical inputs to sensor.

1000060 IO_CONNECTION WARN-
ING

Unit has stopped receiving NMEAmessages at the
MULTIPURPOSE_IO port and is configured to ex-
pect them. Check electrical inputs to sensor.

continues on next page

86

https://ouster.com/tech-support
https://ouster.com/tech-support

Table 11.1 – continued from previous page

ID Category Level Alert Message

1000061 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000062 UNEX-
PECTED_RUNNING_STATE_EXIT

WARN-
ING

Unit has experienced an internal error; please con-
tact Ouster at https://ouster.com/tech-support.

1000063 MO-
TOR_SPEED_BAD_WARNING

WARN-
ING

Unit is spinning outside of tolerant range;
please contact Ouster at https://ouster.com/
tech-support.

1000064 MO-
TOR_SPEED_BAD

WARN-
ING

Unit failed tomaintain target spin rate; please con-
tact Ouster at https://ouster.com/tech-support.

1000065 UNEX-
PECTED_MOTOR_STATE_EXIT

WARN-
ING

Unit has experienced an internal error; please con-
tact Ouster at https://ouster.com/tech-support.

1000066 MO-
TOR_COIL_CHECK_FAILED

WARN-
ING

Unit has experienced a startup error; please con-
tact Ouster at https://ouster.com/tech-support.

87

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

12 Lidar Packet Format Update

Starting in firmware v2.0.0, all sensors with the same number of channels have the same data struc-
ture and samemaximum data rate. Prior to v2.0.0, all sensors, regardless of their number of channels,
had the same data rate.

If you have either a Gen 1 OS1-16 or Gen 1 OS1-32, upon upgrading to firmware v2.0.0, you will see a
drop in data rate. Please refer to the diagram below for a visualization of lidar packet structure.

Prior to v2.0.0, all sensors, regardless of number of channels, had a fixed number of data blocks in
their lidar packets. In v2.0.0, the number of data blocks in a sensor’s Measurement Block is equal to
the number of channels it has. Customers with Gen 1 OS1-16 or Gen 1 OS1-32 will see a 75% and 50%
respective drop in data rate due to unused data blocks being omitted from the sensor output.

88

These customers will also see a change in the output of the TCP command get_beam_intrinsics. Pre-
viously, the beam_azimuth_angles and beam_altitude_angles output array was padded with zeros so that
they were always of length 64, regardless of the number of channels in that sensor. Now, the padded
zeros are dropped so that the lengths of both arrays are equal to number of channel in the sensor e.g.
all 32-channel sensors will have beam_azimuth_angles and beam_altitude_angles output arrays of length
32 on v2.0.0 and beyond.

The TCP command get_lidar_data_format can also be useful in interpreting the lidar data format struc-
ture:

columns_per_frame: Number of data columnsper frame. This can be512, 1024, or 2048, depending
upon the set lidar mode.

columns_per_packet: Number of Measurement Blocks contained in a single lidar packet. In v2.0.0
and earlier, this is 16.

pixel_shift_by_row: Offset in terms of pixel count. Can be used to destagger image. Varies by
lidar mode. Length of this array is equal to the number of channels of the sensor.

pixels_per_column: Number of channels of the sensor.

column_window: Indices of active columns of data in the sensor. These bounds will change when
a custom azimuth window is used.

Please refer to Data Rates section to compare max data rates and the Lidar Data Packet Size Calcu-
lation table to compare lidar packet sizes of all sensors on firmware v2.0.0.

89

13 Inter-sensor Interference Mitigation

Inter-sensor crosstalk occurs when two sensors are operating close together and they interpret each
other’s laser pulses as their own. Mitigating crosstalk between two sensors is a two step process:

1) Phase lock the two sensors

2) Set azimuth window on each sensor so that they don’t send data when they are pointing at each
other

13.1 Two Sensor Example

In this example below, we are trying to mitigate inter-sensor crosstalk between Sensor 1 and Sensor
2 on the car. Both of their connectors are facing towards the back of the car. The Lidar Coordinate
Frame is printed on the back of the vehicle for reference.

Sensor 3

270°

Sensor 2

90°

Sensor 1

180°

90°

0° 180°
270°

270°

Sensor 1

90° Sensor 2

0° 180°
270° 90°

Sensor 1

l

dSensor 2

X Z

Y

First and foremost, placing a physical barrier between the two sensors is the best option to mitigate
cross talk in this example and most scenarios. If this is not possible, we can use the phase locking
feature to eliminate the problem. Crosstalk only occurs when one sensor shines its lasers into the
window of another sensor. The goal of phase locking is to force the sensors to point at each other
simultaneously so that crosstalk occurs when sensors aren’t generating important data about the
environment.

1a) Time synchronize the two sensors via an external source. See the Time Synchronization section
for more details on time synchronizing sensors with an external GPS or via PTP.

1b) Phase lock both sensors such that they point directly at each other at the same time. In this case,
wewant Sensor 1 to be pointing at 90° at the same time that Sensor 2 is pointing at 270°. The example
netcat console output would look like below.

→

Note: In the examples below, to distinguish between the command and expected response, a dash has been

90

added before the expected response. The actual response will be without the dash.

Set Sensor 1 to phase lock at 90°:

→

$ nc sensor1_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 90000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Set Sensor 2 to phase lock at 270°:

→

$ nc sensor2_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 270000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

2) Set an azimuth window for both sensors. In this case, the region of interest for Sensor 1 is θ1 and
the region of interest for Sensor 2 is θ2

→

The calculation for θ1 and θ2 is as follows:

θ1 = θ2 = 360◦ − 2 · arctan d

l

In this case, if the two sensors were placed a distance of 100 mm apart, 360◦−2 ·arctan 81
1000

= 360◦−78◦ =
282◦ We want to set azimuth window of size 282° for the two sensors, so that they do not send data in the
78° where they would point at each other. Sensor 1’s azimuth window is the 282° centered around 270°.
Sensor 2’s region of interest is the 282° centered around 90°.

Sensor 1’s azimuth window starts at 129° and follows the CCW direction to end at 51°:

$ nc sensor1_hostname 7501
set_config_param azimuth_window [129000, 51000]
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Sensor 2’s azimuth window starts at 309° and follows the CCW direction to end at 231°:

91

$ nc sensor2_hostname 7501
set_config_param azimuth_window [309000, 231000]
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Product Line Diameter

At window At base including fins

OS0 and OS1 (Gen1 and Gen2) 81 mm 88 mm

OS2 111 mm 121 mm

92

14 Drivers

The latest driver and visualizer resources for all Ouster sensors are found at https://www.ouster.com/
downloads/.

93

https://www.ouster.com/downloads/
https://www.ouster.com/downloads/

15 PTP Profiles Guide

This guide provides instructions on setting the Precision Time Protocol (PTP) profile of the Ouster
sensor. The profile of the Ouster sensor and your master clock must match for time synchronization
to be possible.

15.1 PTP Profiles

There are several PTP profiles that are commonly used. The supported profiles on the Ouster sensor
are listed below:

default - The IEEE 1588 Default PTP profile addresses many common applications. Most PTP
capable devices support the Default profile.

gptp - Generalized PTP (gPTP) is the common name for the IEEE standard 802.1AS-2011 which
improves the interoperability of PTP by simplifying the supported options. The gPTP profile is
useful when using the Ouster sensor with gPTP compatible hardware such as an Audio Visual
Bridge (AVB), e.g. the MOTU AVB.

automotive-slave - The Automotive Slave PTP profile is commonly used in automotive applica-
tions. The primary differences from other profiles are that the Best Master Clock Algorithm
(BMCA) is disabled, the slave device inhibits announce messages, and the time convergence
controller is approximately 8 times faster than the Default profile.

15.2 PTP HTTP API

The PTP profile of the sensor is changed using an HTTP PUT request. This can be done using sev-
eral different tools such as httpie, curl, Advanced REST Client, etc. The full API is available in GET
/api/v1/time/ptp/profile.

The request URL is: http://<sensor_hostname>/api/v1/time/ptp/profile/

Valid values are (““, are included):

”default”

“gptp”

“automotive-slave”

Note: Changing the PTP profile does not require reinitialization or writing the configuration text file to
be persistent. It is persistent as soon a valid PUT request is executed and a valid response is received.

94

https://motu.com/products/avb/avb-switch
https://httpie.org/
https://curl.haxx.se/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US
http:/

15.3 Enabling the PTP profiles

Below are some examples using popular command-line tools.

15.3.1 Example using cURL

In this example we are setting the PTP profile of the Ouster sensor to "gptp" using the cURL command
line tool.

Command

curl -X PUT -H "Content-Type: application/json" -d '"gptp"' http://<sensor_hostname>/api/v1/time/ptp/
↪→profile/

Response

"gptp"%

15.3.2 Example using Httpie

In this example we are setting the PTP profile of the Ouster sensor to "default" using the Httpie com-
mand line tool.

Command

http PUT http://<sensor_hostname>/api/v1/time/ptp/profile <<< '"default"'

Response

"default"%

15.4 Sync Verification

Please see the Sensor PTP Sync Verification section for details on how to verify the sensor is synchro-
nized.

95

16 PTP Quickstart Guide

There are many configurations for a PTP network, this quick start guide aims to cover the basics by
using Ubuntu 18.04 as an example. It provides configuration settings for a commercial PTP grand-
master clock and also provides directions on setting up a Linux computer (Ubuntu 18.04) to function
as a PTP grandmaster.

The linuxptp project provides a suite of PTP tools that can be used to serve as a PTP master clock for
a local network of sensors.

16.1 Assumptions

Command line Linux knowledge (e.g., package management, command line familiarity, etc.).

Ethernet interfaces that support hardware timestamping.

Ubuntu 18.04 is assumed for this tutorial, but any modern distribution should suffice.

Knowledge of systemd service configuration and management.

Familiarity with Linux permissions.

16.2 Physical Network Setup

Ensure the Ouster sensor is connected to the PTP master clock with at most one network switch.
Ideally the sensor should be connected directly to the PTP grandmaster. Alternatively, a simple layer-2
gigabit Ethernet switch will suffice. Multiple switches are not recommended and will add unnecessary
jitter.

16.2.1 Third Party Grandmaster Clock

A dedicated grandmaster clock should be used for the highest absolute accuracy often with a GPS
receiver.

It must be configured with the following parameters which match the linuxptp client defaults:

Transport: UDP IPv4

Delay Mechanism: E2E

Sync Mode: Two-Step

Announce Interval: 1 - sent every 2 seconds

Sync Interval: 0 - sent every 1 second

Delay Request Interval: 0 - sent every 1 second

For more settings, review the port_data_set field returned from the sensor’s HTTP /time/ptp interface.

96

http://linuxptp.sourceforge.net/

16.2.2 Linux PTP Grandmaster Clock

An alternative to an external grandmaster PTP clock is to run a local Linux PTPmaster clock if accuracy
allows. This is often implemented on a vehicle computer that interfaces directly with the lidar sensors.

This section outlines how to configure a master clock.

97

16.3 Example Network Setup

This section assumes the following network setup as it has elements of a local master clock and the
option for an upstream PTP time source.

+-------------------------------------+
| Ubuntu 18.04 System |
| * 2x Intel i210 Ethernet Interfaces |
| * Linux PTP service |
| |
| eno1 eno2 |
+-------+---------------------+-------+

| |
+-------+-------+ +--------+------+
| Trimble GM100 | | + +
GPS -> PTP		Ouster OS1	
grandmaster			
(optional)			
+---------------+ +---------------- |

+--------------- +

The focus is on configuring the Linux PTP service to serve a common clock to all the downstream
Ouster OS1 sensors using the Linux system time from the Ubuntu host machine.

Optionally, a grandmaster clock can be added to discipline the system time of the Linux host.

16.4 Installing Necessary Packages

Several packages are needed for PTP functionality and verification:

linuxptp - Linux PTP package with the following components:

ptp4l daemon to manage hardware and participate as a PTP node

phc2sys to synchronize the Ethernet controller’s hardware clock to the Linux system clock
or shared memory region

pmc to query the PTP nodes on the network.

chrony - A NTP and PTP time synchronization daemon. It can be configured to listen to both NTP
time sources via the Internet and a PTP master clock such as one provided by a GPS with PTP
support. This will validate the time configuration makes sense given multiple time sources.

ethtool - A tool to query the hardware and driver capabilities of a given Ethernet interface.

$ sudo apt update
...
Reading package lists... Done
Building dependency tree
Reading state information... Done

$ sudo apt install linuxptp chrony ethtool
Reading package lists... Done

(continues on next page)

98

(continued from previous page)

Building dependency tree
Reading state information... Done
The following NEW packages will be installed:

chrony ethtool linuxptp
0 upgraded, 3 newly installed, 0 to remove and 29 not upgraded.
Need to get 430 kB of archives.
After this operation, 1,319 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu bionic/main amd64 ethtool amd64 1:4.15-0ubuntu1 [114 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu bionic/universe amd64 linuxptp amd64 1.8-1 [112 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 chrony amd64 3.2-4ubuntu4.2 [203 kB]
Fetched 430 kB in 1s (495 kB/s)
Selecting previously unselected package ethtool.
(Reading database ... 117835 files and directories currently installed.)
Preparing to unpack .../ethtool_1%3a4.15-0ubuntu1_amd64.deb ...
Unpacking ethtool (1:4.15-0ubuntu1) ...
Selecting previously unselected package linuxptp.
Preparing to unpack .../linuxptp_1.8-1_amd64.deb ...
Unpacking linuxptp (1.8-1) ...
Selecting previously unselected package chrony.
Preparing to unpack .../chrony_3.2-4ubuntu4.2_amd64.deb ...
Unpacking chrony (3.2-4ubuntu4.2) ...
Setting up linuxptp (1.8-1) ...
Processing triggers for ureadahead (0.100.0-20) ...
ureadahead will be reprofiled on next reboot
Setting up chrony (3.2-4ubuntu4.2) ...
Processing triggers for systemd (237-3ubuntu10.13) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Setting up ethtool (1:4.15-0ubuntu1) ...

16.5 Ethernet Hardware Timestamp Verification

Identify the Ethernet interface to be used on the client (Linux) machine, e.g., eno1. Run the eth-
tool utility and query this network interface for supported capabilities.

Output of ethtool -T for a functioning Intel i210 Ethernet interface:

$ sudo ethtool -T eno1
Time stamping parameters for eno1:
Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)

(continues on next page)

99

https://www.kernel.org/pub/software/network/ethtool/
https://www.kernel.org/pub/software/network/ethtool/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/i210-ethernet-controller-datasheet.pdf

(continued from previous page)

all (HWTSTAMP_FILTER_ALL)

16.6 Configurations

16.6.1 Configuring ptp4l for Multiple Ports

On a Linux systemwith multiple Ethernet ports (i.e. Intel i210) ptp4l needs to be configured to support
all of them.

Modify /etc/linuxptp/ptp4l.conf and append the following, replacing eno1 and eno2 with the appropri-
ate interface names:

boundary_clock_jbod 1
[eno1]
[eno2]

The default systemd service file for Ubuntu 18.04 attempts to use the eth0 address on the command
line. Override systemd service file so that the configuration file is used instead of hard coded in the
service file.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/ptp4l.service.d

Create a file at /etc/systemd/system/ptp4l.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Restart the ptp4l service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart ptp4l
$ sudo systemctl status ptp4l
* ptp4l.service - Precision Time Protocol (PTP) service

Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/ptp4l.service.d

└─override.conf
Active: active (running) since Wed 2019-03-13 14:38:57 PDT; 3s ago
Docs: man:ptp4l

Main PID: 25783 (ptp4l)
Tasks: 1 (limit: 4915)

CGroup: /system.slice/ptp4l.service
└─25783 /usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 1: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] driver changed our HWTSTAMP options
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] tx_type 1 not 1

(continues on next page)

100

(continued from previous page)

Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] rx_filter 1 not 12
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 2: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 0: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 1: link up
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: link down
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: LISTENING to FAULTY on FAULT_DETECTED (FT_
↪→UNSPECIFIED)
Mar 13 14:38:58 leadlizard ptp4l[25783]: [590189.360] port 1: new foreign master 001747.fffe.700038-1

The above systemctl status ptp4l console output shows systemd correctly reading the override file
created earlier before starting several seconds after the restart command.

The log output shows that a grandmaster clock has been discovered on port 1 (eno1) and port 2 (eno2) is
currently disconnected and in the faulty state as expected. In the test network a Trimble Thunderbolt
PTP GM100 Grandmaster Clock is attached on eno1.

Logs can be monitored (i.e. followed) like so:

$ journalctl -f -u ptp4l
-- Logs begin at Fri 2018-11-30 06:40:50 PST. --
Mar 13 14:51:37 leadlizard ptp4l[25783]: [590948.224] master offset -17 s2 freq -25963 path delay �
↪→ 14183
Mar 13 14:51:38 leadlizard ptp4l[25783]: [590949.224] master offset -13 s2 freq -25964 path delay �
↪→ 14183
Mar 13 14:51:39 leadlizard ptp4l[25783]: [590950.225] master offset 35 s2 freq -25920 path delay �
↪→ 14192
Mar 13 14:51:40 leadlizard ptp4l[25783]: [590951.225] master offset -59 s2 freq -26003 path delay �
↪→ 14201
Mar 13 14:51:41 leadlizard ptp4l[25783]: [590952.225] master offset -24 s2 freq -25986 path delay �
↪→ 14201
Mar 13 14:51:42 leadlizard ptp4l[25783]: [590953.225] master offset -39 s2 freq -26008 path delay �
↪→ 14201
Mar 13 14:51:43 leadlizard ptp4l[25783]: [590954.225] master offset 53 s2 freq -25928 path delay �
↪→ 14201
Mar 13 14:51:44 leadlizard ptp4l[25783]: [590955.226] master offset -85 s2 freq -26050 path delay �
↪→ 14207
Mar 13 14:51:45 leadlizard ptp4l[25783]: [590956.226] master offset 127 s2 freq -25863 path delay �
↪→ 14207
Mar 13 14:51:46 leadlizard ptp4l[25783]: [590957.226] master offset 9 s2 freq -25943 path delay �
↪→ 14208
Mar 13 14:51:47 leadlizard ptp4l[25783]: [590958.226] master offset -23 s2 freq -25973 path delay �
↪→ 14208
Mar 13 14:51:48 leadlizard ptp4l[25783]: [590959.226] master offset -61 s2 freq -26018 path delay �
↪→ 14190
Mar 13 14:51:49 leadlizard ptp4l[25783]: [590960.226] master offset 69 s2 freq -25906 path delay �
↪→ 14190
Mar 13 14:51:50 leadlizard ptp4l[25783]: [590961.226] master offset -73 s2 freq -26027 path delay �
↪→ 14202
Mar 13 14:51:51 leadlizard ptp4l[25783]: [590962.226] master offset 19 s2 freq -25957 path delay �
↪→ 14202
Mar 13 14:51:52 leadlizard ptp4l[25783]: [590963.226] master offset 147 s2 freq -25823 path delay �
↪→ 14202
...

101

16.6.2 Configuring ptp4l as a Local Master Clock

The IEEE-1588BestMasterClockAlgorithm (BMCA) will select a grandmaster clock based on anumber
ofmasters. Inmost networks there should be only a singlemaster. In the example network the Ubuntu
machine will be configured with a non-default clockClass so its operation qualifies it to win the BMCA.

Replace the default value with a lower clock class (higher priority) and restart linuxptp. Edit /etc/
linuxptp/ptp4l.conf and comment out the default clockClass value and insert a line setting it 128.

#clockClass 248
clockClass 128

Restart ptp4l so the configuration change takes effect.

$ sudo systemctl restart ptp4l

This will configure ptp4l to advertise a master clock on eno2 as a clock that will win the BMCA for an
Ouster OS1 sensor.

However, the ptp4l service is only advertising the Ethernet controller’s PTP hardware clock, not the
Linux system time as is often expected.

16.6.3 Configuring phc2sys to Synchronize the System Time to the PTP Clock

To synchronize the Linux system time to the PTP hardware clock the phc2sys utility needs to be run.
The following configuration will tell phc2sys to take the Linux CLOCK_REALTIME and write that time to the
PTP hardware clock in the Ethernet controller for eno2. These interfaces are then connected to PTP
slaves such as Ouster OS1 sensors.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/phc2sys.service.d

Create a file at /etc/systemd/system/phc2sys.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/phc2sys -w -s CLOCK_REALTIME -c eno2

Note: If multiple interfaces need to be synchronized from CLOCK_REALTIME then multiple instances of
the phc2sys service need to be run as it only accepts a single slave (i.e. -c) argument.

Restart the phc2sys service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart phc2sys
$ sudo systemctl status phc2sys

102

16.6.4 Configuring Chrony to Set System Clock Using PTP

An upstream PTP grandmaster clock (e.g., a GPS disciplined PTP clock) can be used to set the system
time if precise absolute time is needed for sensor data. Chrony is a Linux time service that can read
from NTP and PTP and set the Linux system time using the most accurate source available. With a
properly functioning PTP grandmaster the PTP time source will be selected and the error from the
public time servers can be reviewed.

The following phc2shm service will synchronize the time from eno1 (where the external grandmaster
is attached) to the system clock.

Create a file named /etc/systemd/system/phc2shm.service with the following contents:

/etc/systemd/system/phc2shm.service
[Unit]
Description=Synchronize PTP hardware clock (PHC) to NTP SHM
Documentation=man:phc2sys
After=ntpdate.service
Requires=ptp4l.service
After=ptp4l.service

[Service]
Type=simple
ExecStart=/usr/sbin/phc2sys -s eno1 -E ntpshm -w

[Install]
WantedBy=multi-user.target

Then start the newly created service and check that it started.

$ sudo systemctl start phc2shm
$ sudo systemctl status phc2shm

Add the PTP time source to the chrony configuration which will read the shared memory region man-
aged by the phc2shm service created above.

Append the following to the /etc/chrony/chrony.conf file:

refclock SHM 0 poll 1 refid ptp

Restart chrony so the updated configuration file takes effect:

$ sudo systemctl restart chrony

After waiting a minute for the clock to synchronize, review the chrony client timing accuracy:

$ chronyc tracking
Reference ID : 70747000 (ptp)
Stratum : 1
Ref time (UTC) : Thu Mar 14 02:22:58 2019
System time : 0.000000298 seconds slow of NTP time
Last offset : -0.000000579 seconds
RMS offset : 0.001319735 seconds

(continues on next page)

103

(continued from previous page)

Frequency : 0.502 ppm slow
Residual freq : -0.028 ppm
Skew : 0.577 ppm
Root delay : 0.000000001 seconds
Root dispersion : 0.000003448 seconds
Update interval : 2.0 seconds
Leap status : Normal

$ chronyc sources -v
210 Number of sources = 9

.-- Source mode '^' = server, '=' = peer, '#' = local clock.
/ .- Source state '*' = current synced, '+' = combined , '-' = not combined,

| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
|| .- xxxx [yyyy] +/- zzzz
|| Reachability register (octal) -. | xxxx = adjusted offset,
|| Log2(Polling interval) --. | | yyyy = measured offset,
|| \ | | zzzz = estimated error.
|| | | \
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
#* ptp 0 1 377 1 +27ns[+34ns] +/- 932ns
^- chilipepper.canonical.com 2 6 377 61 -482us[-482us] +/- 99ms
^- pugot.canonical.com 2 6 377 62 -498us[-498us] +/- 112ms
^- golem.canonical.com 2 6 337 59 -467us[-468us] +/- 95ms
^- alphyn.canonical.com 2 6 377 58 +957us[+957us] +/- 95ms
^- legacy13.chi1.ntfo.org 3 6 377 62 -10ms[-10ms] +/- 178ms
^- tesla.selinc.com 2 6 377 128 +429us[+514us] +/- 42ms
^- io.crash-override.org 2 6 377 59 +441us[+441us] +/- 58ms
^- hadb2.smatwebdesign.com 3 6 377 58 +1364us[+1364us] +/- 99ms

Note that the Reference IDmatches the ptp refid from the chrony.conf file and that the sources output
shows the ptp reference id as selected (signified by the * state in the second column). Additionally,
the NTP time sources show a small relative error to the high accuracy PTP time source.

In this case the PTP grandmaster is properly functioning.

If this error is large, chrony will select the NTP time sources and mark the PTP time source as invalid.
This typically signifies that something is mis-configured with the PTP grandmaster upstream of this
device or the linuxptp configuration.

104

16.7 Verifying Operation

If the PTP grandmaster was just set up and configured, it’s recommended to power cycle the sensor.
The sensor will then jump to the correct time instead of slowly easing in the time adjustment which
will take time if the grandmaster initially set the sensor to the wrong time.

16.7.1 Sensor PTP Sync Verification

The sensor can be queried for the state of its local PTP service through the GET /api/v1/time/ptp re-
quest.

JSON response fields to check:

parent_data_set.grandmaster_identity should list the identity of the local grandmaster

port_data_set.port_state should be SLAVE

time_status_np.gm_present should be true

time_status_np.master_offset which is given in nanoseconds, should be less than 250000. This
equates to 250 microseconds.

PTP Example JSON Response

{
"profile": "default",
"parent_data_set": {

"grandmaster_identity": "001747.fffe.700038",
"parent_port_identity": "ac1f6b.fffe.1db84e-2",
"parent_stats": 0,
"gm_clock_class": 6,
"observed_parent_clock_phase_change_rate": 2147483647,
"gm_clock_accuracy": 33,
"gm_offset_scaled_log_variance": 65535,
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_offset_scaled_log_variance": 65535

},
"current_data_set": {

"steps_removed": 1,
"offset_from_master": 61355,
"mean_path_delay": 117977.0

},
"port_data_set": {

"port_state": "SLAVE",
"peer_mean_path_delay": 0,
"log_min_delay_req_interval": 0,
"port_identity": "bc0fa7.fffe.c48254-1",
"log_sync_interval": 0,
"log_announce_interval": 1,
"delay_mechanism": 1,

(continues on next page)

105

(continued from previous page)

"log_min_pdelay_req_interval": 0,
"announce_receipt_timeout": 3,
"version_number": 2

},
"time_status_np": {

"gm_time_base_indicator": 0,
"gm_identity": "001747.fffe.700038",
"cumulative_scaled_rate_offset": 0,
"scaled_last_gm_phase_change": 0,
"ingress_time": 0,
"master_offset": 61355,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"gm_present": true

},
"time_properties_data_set": {

"frequency_traceable": 0,
"leap61": 0,
"time_traceable": 0,
"current_utc_offset": 37,
"leap59": 0,
"current_utc_offset_valid": 0,
"time_source": 160,
"ptp_timescale": 1

}
}

16.7.2 LinuxPTP PMC Tool

The sensor will respond to PTP management messages. The linuxptp pmc (see man pmc) utility can be
used to query all PTP devices on the local network.

On the Linux host for the pmc utility to communicate with then run the following command:

$ sudo pmc 'get PARENT_DATA_SET' 'get CURRENT_DATA_SET' 'get PORT_DATA_SET' 'get TIME_STATUS_NP' -i eno2
sending: GET PARENT_DATA_SET
sending: GET CURRENT_DATA_SET
sending: GET PORT_DATA_SET
sending: GET TIME_STATUS_NP

bc0fa7.fffe.c48254-1 seq 0 RESPONSE MANAGEMENT PARENT_DATA_SET
parentPortIdentity ac1f6b.fffe.1db84e-2
parentStats 0
observedParentOffsetScaledLogVariance 0xffff
observedParentClockPhaseChangeRate 0x7fffffff
grandmasterPriority1 128
gm.ClockClass 6
gm.ClockAccuracy 0x21
gm.OffsetScaledLogVariance 0x4e5d
grandmasterPriority2 128
grandmasterIdentity 001747.fffe.700038

bc0fa7.fffe.c48254-1 seq 1 RESPONSE MANAGEMENT CURRENT_DATA_SET
stepsRemoved 2

(continues on next page)

106

(continued from previous page)

offsetFromMaster 61355.0
meanPathDelay 117977.0

bc0fa7.fffe.c48254-1 seq 2 RESPONSE MANAGEMENT PORT_DATA_SET
portIdentity bc0fa7.fffe.c48254-1
portState SLAVE
logMinDelayReqInterval 0
peerMeanPathDelay 0
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval 0
delayMechanism 1
logMinPdelayReqInterval 0
versionNumber 2

bc0fa7.fffe.c48254-1 seq 3 RESPONSE MANAGEMENT TIME_STATUS_NP
master_offset 61355
ingress_time 0
cumulativeScaledRateOffset +0.000000000
scaledLastGmPhaseChange 0
gmTimeBaseIndicator 0
lastGmPhaseChange 0x0000'0000000000000000.0000
gmPresent true
gmIdentity 001747.fffe.700038

16.7.3 Tested Grandmaster Clocks

Trimble Thunderbolt PTP GM100 Grandmaster Clock

Firmware version: 20161111-0.1.4.0, November 11 2016 15:58:25

PTP configuration:

→

> get ptp eth0
Enabled : Yes

Clock ID : 001747.fffe.700038-1
Profile : 1588

Domain number : 0
Transport protocol : IPV4

IP Mode : Multicast
Delay Mechanism : E2E

Sync Mode : Two-Step
Clock Class : 6
Priority 1 : 128
Priority 2 : 128

Multicast TTL : 0
Sync interval : 0

Del Req interval : 0
Ann. interval : 1

Ann. receipt timeout : 3

Ubuntu 18.04 + Linux PTP as a master clock

Intel i210 Ethernet interface

107

PCI hardware identifiers: 8086:1533 (rev 03)

Ubuntu 18.04 kernel package: linux-image-4.18.0-16-generic

Ubuntu 18.04 linuxptp package: linuxptp-1.8-1

108

17 Networking Guide

17.1 Networking 101

This guide will help you understand how to quickly get connected to your sensor to start doing great
things with it. When trying to connect to the sensor for the first time there are some basics that need
to be achieved for successful communication between the host machine and the sensor.

We need to ensure that the sensor receives an IP address from the host machine so that we can talk
to it. This can be achieved with a few different methods such as DHCP, link-local, static IP. We also
need to ensure that the sensor and the host machine are talking on the same subnet.

Once the sensor receives an IP address and is on the correct subnet we can talk to it using its host-
name, os-991234567890.local, where 991234567890 is the sensor serial number.

If some of this terminology is new to you don’t fret, we have defined some of it for you. Here is some
basic terminology that will help you digest the steps and be more familiar with networking in general.

IPv4 Address This is the address that can be used to communicate with devices on a network. The
format of an IPv4 address is a set of four octets, xxx.xxx.xxx.xxxwith xxx being in the range 0-255.
For example, your host machine Ethernet port may have an address of 192.0.2.1 and your sensor
may have an address of 192.0.2.130.

DHCP (Dynamic Host Configuration Protocol) Server This is a server that may run on your host
machine, switch, or router which will serve an IPv4 address to a device that is connected to it. It
will ensure that each device connected will have a unique IPv4 address on the network.

Link-local IPv4 Address These are the addresses that are self-assigned between the host machine
and a device connected to it in the absence of a DHCP server. They are only valid within the
network segment that the host is connected to. The addresses lie within the block 169.254.0.0/
16 (169.254.0.0 - 169.254.255.255).

Subnet Mask This defines which bits of the IPv4 address are the network prefix and which are the
host identifiers. See the table below for an example.

Binary Form Decimal-dot notation

IP address 11000000.00000000.00000010.10000010 192.0.2.130

Subnet mask 11111111.11111111.11111111.00000000 255.255.255.0

Network prefix 11000000.00000000.00000010.00000000 192.0.2.0

Host identifier 00000000.00000000.00000000.10000010 0.0.0.130

Note: Subnet mask can be abbreviated with the number of bits that apply to the network prefix.
E.g. /24 for 255.255.255.0 or /16 for 255.255.0.0.

Static IPv4 Address This is when you specify the addresses for the host machine and/or connected
device rather than letting the host machine self-assign or using a DHCP server. For example, you

109

may want to specify the host machine IPv4 address to be 192.0.2.100/24 and the sensor to be
192.0.2.200.

Hostname This is the more human readable name that comes with your sensor. The sensor’s host-
name is os-991234567890.local, where 991234567890 is the sensor serial number.

Note: The .local portion of the hostname denotes the local domain used in combination with
multicast DNS (mDNS). It is employed when using the sensor in a local network environment with
supporting operating system services. This means when the sensor is directly connected to the
host machine or if the host machine and sensor are on the same network connected through a
router or switch. If you are trying to connect to the sensor on another domain with a supporting
DHCP and DNS server configuration you should replace the .local with the domain the sensor
is on. For example, if the sensor is connected to a network with domain ouster-domain.com the
sensor will be reachable on os-991234567890.ouster-domain.com.

17.2 Windows

The following steps have been tested onWindows 10. The sensor’s hostname is os-991234567890.local,
where 991234567890 is the sensor serial number.

17.2.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the
sensor.

17.2.2 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps in Determining the IPv4
Address of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

110

17.2.3 Determining the IPv4 Address of the Sensor

1. Open a command prompt on the host machine by pressingWin+X and then A

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 [sensor_hostname]

Example

C:\WINDOWS\system32>ping -4 os-991234567890.local

Note: If this command hangs you may need to go back and configure your interface to
link-local in the section Connecting the Sensor

Response

Pinging os-991234567890.local [169.254.0.123] with 32 bytes of data:
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64

Ping statistics for 169.254.0.123:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor with mDNS Service Discovery

Command

dns-sd -G v4 [sensor_hostname]

Example

C:\WINDOW\system32>dns-sd -G v4 os-991234567890.local

Response

Timestamp A/R Flags if Hostname Address TTL
14:22:46.897 Add 2 6 os-991234567890.local 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

111

17.2.4 Determining the IPv4 Address of the Interface

1. Open a command prompt by pressingWin+X and then A

2. View the IPv4 address of your interfaces

Command

netsh interface ip show config

Example

C:\WINDOWS\system32>netsh interface ip show config

Response

Configuration for interface "Local Area Connection"
DHCP enabled: Yes
IP Address: 169.254.0.1
Subnet Prefix: 169.254.0.0/16 (mask 255.255.0.0)
InterfaceMetric: 25
DNS servers configured through DHCP: None
Register with which suffix: Primary only
WINS servers configured through DHCP: None

Configuration for interface "Loopback Pseudo-Interface 1"
DHCP enabled: No
IP Address: 127.0.0.1
Subnet Prefix: 127.0.0.0/8 (mask 255.0.0.0)
InterfaceMetric: 75
Statically Configured DNS Servers: None
Register with which suffix: Primary only
Statically Configured WINS Servers: None

In this example, your sensor is plugged into interface “Local Area Connection”

Your host IPv4 address will be on the line that starts with IP Address: In this case it is
169.254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local
to the sensor. This means that Windows self-assigned an IP address in the absence of a
DHCP server.

17.2.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP

Command

112

netsh interface ip set address ["Network Interface Name"] dhcp

Example with interface name "Local Area Connection"

C:\WINDOWS\system32>netsh interface ip set address "Local Area Connection" dhcp

Response blank

17.2.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static

Command

netsh interface ip set address name="Network Interface Name" static [IP address] [Subnet Mask]�
↪→[Gateway]

Example with interface name “Local Area Connection” and IPv4 address 192.0.2.1/24.

C:\WINDOWS\system32>netsh interface ip set address name="Local Area Connection" static�
↪→192.0.2.1/24

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response blank

17.2.7 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as dns-sd (Windows/ma-
cOS) to find all sensors connected to the network.

Note: If your version of Windows does not have dns-sd on the command line you can install it by
downloading the Bonjour SDK for Windows (available through Apple or Softpedia)

1. Find all sensors and their associated service text on a network.

Command

dns-sd -Z [service type]

Example

C:\WINDOWS\system32> dns-sd -Z _roger._tcp

Response

113

https://developer.apple.com/download/more/?=Bonjour%20SDK%20for%20Windows/
https://www.softpedia.com/get/Programming/SDK-DDK/Bonjour-SDK.shtml/

Browsing for _roger._tcp

; To direct clients to browse a different domain, substitute that domain in place of�
↪→'@'
lb._dns-sd._udp PTR @

; In the list of services below, the SRV records will typically reference dot-local�
↪→Multicast DNS names.
; When transferring this zone file data to your unicast DNS server, you'll need to�
↪→replace those dot-local
; names with the correct fully-qualified (unicast) domain name of the target host�
↪→offering the service.

_roger._tcp PTR Ouster\032Sensor\032�
↪→991234567890._roger._tcp
Ouster\032Sensor\032 991234567890._roger._tcp SRV 0 0 7501 os-991234567890.
↪→local. ; Replace with unicast FQDN of target host
Ouster\032Sensor\032 991234567890._roger._tcp TXT "pn=840-102145-B" "sn=�
↪→991234567890" "fw=ousteros-image-prod-aries-v2.0.0-20200417193957"

2. Browse for the sensor IPv4 address using dns-sd and the sensor hostname.

Command

dns-sd -G v4 [sensor_hostname]

Example

C:\WINDOWS\system32>dns-sd -G v4 os-991234567890.local

Response

Timestamp A/R Flags if Hostname Address TTL
14:22:46.897 Add 2 6 os-991234567890.local. 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123

114

17.3 macOS

The following steps have been tested on macOS 10.15.4. The sensor’s hostname is os-991234567890.
local, where 991234567890 is the sensor serial number.

17.3.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the
sensor.

17.3.2 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps in Determining the IPv4
Address of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

17.3.3 Determining the IPv4 Address of the Sensor

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -c3 [sensor_hostname]

Example

Mac-Computer:~ username$ ping -c3 os-991234567890.local

Note: If this command hangs you may need to go back and configure your interface to
link-local in the section Connecting the Sensor

Response

PING os-991234567890.local (169.254.0.123): 56 data bytes
64 bytes from 169.254.0.123: icmp_seq=0 ttl=64 time=0.644 ms
64 bytes from 169.254.0.123: icmp_seq=1 ttl=64 time=0.617 ms

115

64 bytes from 169.254.0.123: icmp_seq=2 ttl=64 time=0.299 ms

--- os-991234567890.local ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.299/0.520/0.644/0.157 ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor with mDNS Service Discovery

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 os-991234567890.local

Response

DATE: ---Tue 28 Apr 2020---
11:40:43.228 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
11:40:43.414 Add 2 18 os-991234567890.local. 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

17.3.4 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. en1 in the example below.

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. View the IPv4 address of your interfaces

Command

ifconfig

Example

Mac-Computer:~ username$ ifconfig

Response

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>

116

inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
nd6 options=201<PERFORMNUD,DAD>

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 38:f9:d3:d6:33:8a
inet6 fe80::1c30:1246:93a2:9f68%en0 prefixlen 64 secured scopeid 0x7
inet 192.0.2.7 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active

en1: flags=8963<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 48:65:ee:1d:22:35
inet6 fe80::c27:1917:47ed:bcfe%en1 prefixlen 64 secured scopeid 0x12
inet 169.254.0.1 netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

In this example, your sensor is plugged into interface en1

Your host IPv4 address will be on the line that starts with inet: In this case it is 169.
254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local
to the sensor. This means that Windows self-assigned an IP address in the absence of a
DHCP server.

17.3.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP

Command

sudo ipconfig set [interface_name] DHCP

Example with interface name en1

Mac-Computer:~ username$ sudo ipconfig set en1 DHCP

Response blank, however you can verify the change has beenmadewith the ifconfig command.
The inet line will be blank if nothing is plugged in or shows the DHCP or link-local self-
assigned IPv4 address. E.g. 169.254.0.1

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

117

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet 169.254.0.1 netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

17.3.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static

Command

sudo ipconfig set [interface_name] MANUAL [ip_address] [subnet_mask]

Example with interface name en1 and IPv4 address 192.0.2.1 and subnet mask 255.255.255.0.

Mac-Computer:~ username$ sudo ipconfig set en1 MANUAL 192.0.2.1 255.255.255.0

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response blank, however you can verify the change has beenmadewith the ifconfig command.
The inet line will show the static IPv4 address. e.g. 192.0.2.1.

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet 192.0.2.1 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

17.3.7 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as dns-sd (Windows/ma-
cOS) to find all sensors connected to the network.

1. Find all sensors and their associated service text on a network.

Command

dns-sd -Z [service type]

118

Example

Mac-Computer:~ username$ dns-sd -Z _roger._tcp

Response

Browsing for _roger._tcp
DATE: ---Thu 30 Apr 2020---
17:27:52.242 ...STARTING...

; To direct clients to browse a different domain, substitute that domain in place of�
↪→'@'
lb._dns-sd._udp PTR @

; In the list of services below, the SRV records will typically reference dot-local�
↪→Multicast DNS names.
; When transferring this zone file data to your unicast DNS server, you'll need to�
↪→replace those dot-local
; names with the correct fully-qualified (unicast) domain name of the target host�
↪→offering the service.

_roger._tcp PTR Ouster Sensor 991234567890._
↪→roger._tcp
Ouster Sensor 991234567890._roger._tcp SRV 0 0 7501 os-991234567890.local. ;�
↪→Replace with unicast FQDN of target host
Ouster Sensor 991234567890._roger._tcp TXT "pn=840-102145-B" "sn= 991234567890"�
↪→"fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= 991234567890"

2. Browse for the sensor IPv4 address using dns-sd and the sensor hostname.

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 os-991234567890.local

Response

DATE: ---Thu 30 Apr 2020---
17:37:33.155 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
17:37:33.379 Add 2 7 os-991234567890.local. 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123

119

17.4 Linux

The following steps have been tested on Ubuntu 18.04. The sensor’s hostname is os-991234567890.
local, where 991234567890 is the sensor serial number.

17.4.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

3. If directly connecting to the host machine you may need to set your Ethernet interface to Link-
Local Only mode. This can be done via the command line or GUI. See instructions in Setting the
Interface to Link-Local Only

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the
sensor.

17.4.2 Setting the Interface to Link-Local Only

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method link-local ipv4.addresses ""

Example with interface name eth0 and IPv4 address "".

username@ubuntu:~$ nmcli con modify eth0 ipv4.method link-local ipv4.addresses ""

Response blank, however you can verify the change has been made with the ip addr command.
The inet line for the interface eth0 will show the link-local IPv4 address automatically ne-
gotiated once the sensor is reconnected to the interface. e.g. 169.254.0.1.

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen�
↪→1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 169.254.0.1/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever

120

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Link-Local Onlymode using the graph-
ical user interface.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

17.4.3 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps in Determining the IPv4
Address of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

121

17.4.4 Determining the IPv4 Address of the Sensor

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 -c3 [sensor_hostname]

Example

username@ubuntu:~$ ping -4 -c3 os-991234567890.local

Note: If this command hangs you may need to go back and configure your interface to
link-local in the section Setting the Interface to Link-Local Only

Response

PING os-991234567890.local (169.254.0.123) 56(84) bytes of data.
64 bytes from os-991234567890.local (169.254.0.123): icmp_seq=1 ttl=64 time=1.56 ms
64 bytes from os-991234567890.local (169.254.0.123): icmp_seq=2 ttl=64 time=0.893 ms
64 bytes from os-991234567890.local (169.254.0.123): icmp_seq=3 ttl=64
time=0.568 ms

--- os-991234567890.local ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2025ms
rtt min/avg/max/mdev = 0.568/1.008/1.565/0.416 ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using avahi-browse and the sensor service type,
which is _roger._tcp. Learn more about this in Finding a Sensor with mDNS Service Discovery

Command

avahi-browse -lrt [service type]

Example

username@ubuntu:~$ avahi-browse -lrt _roger._tcp

Response

+ eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local
+ eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local
= eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]

122

mailto:username@ubuntu

= eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local
hostname = [os-991234567890.local]
address = [169.254.0.123]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= 991234567890"�

↪→"pn=840-102145-B"]

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

17.4.5 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. eth0 in the example below.

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. View the IPv4 address of your interfaces

Command

ip addr

Example

username@ubuntu:~$ ip addr

Response

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen�
↪→1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 169.254.0.1/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 192.0.2.232/24 brd 192.0.2.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

123

4: gpd0: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN group default�
↪→qlen 500

link/none

In this example, your sensor is plugged into interface eth0

Your host IPv4 address will be on the line that starts with inet: In this case it is 169.
254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local
to the sensor. This means that Windows self-assigned an IP address in the absence of a
DHCP server.

17.4.6 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Note: It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method auto ipv4.addresses ""

Example with interface name eth0

username@ubuntu:~$ nmcli con modify eth0 ipv4.method auto ipv4.addresses ""

Response blank, however you can verify the change has been made with the ip addr command.
There will be no inet line for the interface eth0 until you plug in a cable to a device that has
a DHCP server to provide an IPv4 address the interface

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default�
↪→qlen 1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen�
↪→1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
(continues on next page)

124

(continued from previous page)

inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0
valid_lft forever preferred_lft forever

inet6 fe80::250:56ff:fe28:7a8a/64 scope link
valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Automatic (DHCP) mode using the
graphical user interface.

17.4.7 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Note: It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method manual ipv4.addresses [ip_address]

Example with interface name eth0 and IPv4 address 192.0.2.1/24.

username@ubuntu:~$ nmcli con modify eth0 ipv4.method manual ipv4.addresses 192.0.2.1/24

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

125

Response blank, however you can verify the change has been made with the ip addr command.
The inet line for the interface eth0 will show the static IPv4 address. e.g. 192.0.2.1

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen�
↪→1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen�
↪→1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Manual (static)mode using the graph-
ical user interface.

126

17.4.8 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as avahi-browse (Linux) to
find all sensors connected to the network.

1. Find all sensors and their associated service text which includes the sensor IPv4 address using
avahi-browse and the sensor service type _roger._tcp.

Command

avahi-browse -lrt [service type]

Example

username@ubuntu:~$ avahi-browse -lrt _roger._tcp

Response

+ eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local
+ eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local
= eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = []
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= 991234567890"�

↪→"pn=840-102145-B"]

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123.

127

18 GPS/GNSS Synchronization Guide

This guide will explain how to physically connect a GPS to your Ouster sensor and synchronize the
Ouster sensor timestamp to an NMEA sentence.

18.1 Setting up your GPS/GNSS

It is important to ensure you have configured your GPS according to themanufacturer’s specifications.

The Ouster sensor accepts the following:

NMEA sentence type: GPRMC only (future support for other sentence types)

Baud Rates: 9600 or 115200

Polarity: Normal or Reversed (ACTIVE_HIGH or ACTIVE_LOW)

Voltage: 3.3 - 15 V logic with a minimum drive current of 5 mA.

If yourGPS can’tmeet theseminimums youwill need to buffer the voltagewith an additional
circuit. Details in the Digital IO section of the Ouster Hardware User Manual.

Note: Once you have configured your GPS, it is good practice to verify the signals using an oscil-
loscope. This will ensure you have the correct baud rate, polarity, voltage, and message type being
output.

18.2 Connecting the Hardware

The next step to successfully connecting your GPS is ensuring that you have connected the outputs
from your GPS to the correct inputs of the sensor.

For lab applications where you will use the interface box, it is recommended to use terminated jumper
wires like these to ensure a solid connection.

→

128

Connect the PPS output from your GPS to the sync_pulse_in pin of the Ouster Interface Box, pictured below
in yellow.

Connect the NMEA UART output from your GPS to the multipurpose_io pin of the Ouster Interface Box,
pictured below in magenta.

Connect the ground output from your GPS to the GND pin of the Ouster Interface Box, pictured below in
gray

129

Note: Please note the Voltage andCurrent requirements from theHardware UserManual in the tables
below.

Table18.1: SYNC_PULSE_IN Interface Requirements

Parameter Min Voltage Max Voltage Min Driver Current

LOGIC LOW 0 V 1 V N/A

LOGIC HIGH 3.3 V 15 V 5 mA

Table18.2: MULTIPURPOSE_IO - INPUT Interface Requirements

Parameter Min Voltage Max Voltage Min Driver Current

LOGIC LOW 0 V 1 V N/A

LOGIC HIGH 1.7 V 15 V 10 mA

18.3 Configuring the Ouster Sensor

Now that everything is configured and verified on the GPS side and you have connected everything
to the Ouster sensor, it is time to configure the Ouster sensor to synchronize its timestamp with the
GPS.

Set the timestamp_mode to TIME_FROM_SYNC_PULSE_IN

TCP command: set_config_param timestamp_mode TIME_FROM_SYNC_PULSE_IN

Set the multipurpose_io_mode to INPUT_NMEA_UART

TCP command: set_config_param multipurpose_io_mode INPUT_NMEA_UART

Set the polarity of the sync_pulse_in pin to match the GPS PPS polarity

TCP command: set_config_param sync_pulse_in_polarity <ACTIVE_HIGH or ACTIVE_LOW>

Set the polarity of the multipurpose_io pin to match the GPS NMEA UART polarity

TCP command: set_config_param nmea_in_polarity <ACTIVE_HIGH or ACTIVE_LOW>

Set the nmea_baud_rate to match the GPS NMEA baud rate

TCP command: set_config_param nmea_baud_rate <BAUD_11520 or BAUD_9600>

Set the nmea_leap_seconds to match the current leap seconds as defined by TIA at this website, at
time of writing this the leap seconds are 37

TCP command: set_config_param nmea_leap_seconds 37

Reinitialize and write the configuration

TCP command: reinitialize

130

http://www.leapsecond.com/java/gpsclock.htm

TCP command: save_config_params

18.3.1 Checking for Sync

Once you have completed all the above you should be able to check for synchronization

Check the output from the TCP command: get_time_info

Verify that the sensor is locked onto the PPS signal

”sync_pulse_in”: { “locked”: 1

· if not check the polarity and change it if necessary

Verify that the sensor is locked on the NMEA signal

“nmea”: { “locked”: 1

if not check the polarity and baud rate and change them if necessary

Verify that last_read_message looks like a valid GPRMC sentence

“decoding”: {“last_read_message”: “GPRMC,024041.00,A,5107.0017737,N,11402.3291611,W,0.080,323.3,020420,0.0,E,A*20”

Verify that timestamp time has updated to a reasonable GPS time

“timestamp”: { “time”: 1585881641.96139565999999, “mode”:
“TIME_FROM_SYNC_PUSLE_IN”, “time_options”: { “sync_pulse_in”: 1585881641

Example output from get_time_info:

{
"timestamp":{

"time":1585881641.96139565999999,
"mode":"TIME_FROM_SYNC_PUSLE_IN",
"time_options":{

"sync_pulse_in":1585881641,
"internal_osc":302,
"ptp_1588":309

}
},
"sync_pulse_in":{

"locked":1,
"diagnostics":{

"last_period_nsec":10,
"count_unfiltered":832,
"count":832

},
"polarity":"ACTIVE_HIGH"

},
"multipurpose_io":{

"mode":"INPUT_NMEA_UART",
"sync_pulse_out":{

"pulse_width_ms":10,
"angle_deg":360,
"frequency_hz":1,
"polarity":"ACTIVE_HIGH"

(continues on next page)

131

(continued from previous page)

},
"nmea":{

"locked":1,
"baud_rate":"BAUD_9600",
"diagnostics":{

"io_checks":{
"bit_count":2938457,
"bit_count_unfilterd":2938457,
"start_char_count":832,
"char_count":66526

},
"decoding":{

"last_read_message":"GPRMC,024041.00,A,5107.0017737,N,11402.3291611,W,0.080,323.3,020420,0.0,
↪→E,A*20",

"date_decoded_count":832,
"not_valid_count":0,
"utc_decoded_count":832

}
},
"leap_seconds":37,
"ignore_valid_char":0,
"polarity":"ACTIVE_HIGH"

}
}

}

132

19 Updating Firmware

Sensor firmware can be updated with an Ouster-provided firmware file from
www.ouster.com/resources (or directly from the deployment engineering team) by accessing
the sensor over http - e.g., http://os-991900123456.local/ and uploading the file as prompted.

Figure19.1: Uploading a new firmware image onto the sensor

Always check your firmware version before attempting an update. Only update to an equal or higher
version number.

19.1 Downgrading Firmware

Do not roll back firmware to lower numbered versions without having been instructed to do so by
Ouster. If you do, your sensor may experience issues. If your sensor is experiencing startup issues
upon downgrading from v2.0.0, reset the on-sensor configuration by using the Reset Configuration
button on Sensor Homepage.

133

https://www.ouster.com/resources
http://os-991900123456.local

20 Firmware Changelog

→

Version v2.1.0

Date 2021-05-21

Added

Add support for Calibrated Reflectivity

Add Config UI to sensor web page (Beta)

Add signal multiplier modes to increase signal strength in the enabled azimuth window for
gen2 sensors only

Add alerts for motor speed

Add alerts for unexpected sensor state transition

Improve OS2 cold start to -20˚C

Improve OS2 signal strength by 16%

Removed

Delete TCP command set_data_dst_ip.

Delete TCP command get_data_dst_ip.

Delete TCP command set_udp_port_lidar.

Delete TCP command set_udp_port_imu.

Delete TCP command get_lidar_mode.

Delete TCP command set_lidar_mode.

Delete TCP command get_config_file_path.

Delete TCP command set_auto_start_flag.

Delete TCP command get_auto_start_flag.

Delete TCP command get_watchdog_status.

Changed

Change the Reflectivity values in the packets from 16-bit to 8-bit

Fixed

Fixed phase locked motor control to handle out-of-bounds motor velocity.

Slow time sync on initial boot with PTP

134

	Safety and Safe Use
	Safety & Legal Notices
	Proper Assembly, Maintenance and Safe Use
	Assemblage correct et utilisation sûre

	Connecting to Sensor
	Network Configuration
	Sensor Output Visualization

	Sensor Data
	Coordinate Frames and XYZ Calculation
	Lidar Coordinate Frame
	Lidar Range to XYZ
	Sensor Coordinate Frame
	Combining Lidar and Sensor Coordinate Frame
	Lidar Intrinsic Beam Angles
	Lidar Range Data To Sensor XYZ Coordinate Frame
	IMU Data To Sensor XYZ Coordinate Frame

	Lidar Data
	Lidar Data Format
	Lidar Data Packet Size Calculation
	Calibrated Reflectivity

	IMU Data
	IMU Data Format

	Data Rates
	Sensor Performance by Operating Configuration
	Estimated range multiplier
	Maximal representable range
	Estimated precision multiplier

	Key Features
	Azimuth Window
	Expected Sensor Behavior
	Azimuth Window Examples

	Phase Lock
	Phase Locking Reference Frame
	Phase Locking Commands
	Multi-sensor Example
	Accuracy
	Phase Locking Alerts

	Standby Operating Mode
	Expected Sensor Behavior
	Standby Operating Mode Examples

	Cold Start
	Hardware Requirements
	Cold Start Operation
	Indications and Alerts

	Signal Multiplier
	Use
	Expected Behavior
	Examples

	Features / Releases Support Table

	Time Synchronization
	Timing Overview Diagram
	Sensor Time Source
	Setting Ouster Sensor Time Source
	External Trigger Clock Source

	NMEA Message Format

	Inputs and Interfaces
	Web Interface
	Electrical and Mechanical Interface

	Troubleshooting
	Sensor Homepage and HTTP Server
	Networking
	get_alerts
	Using Latest Firmware

	HTTP API Reference
	system/firmware
	GET /api/v1/system/firmware

	diagnostics
	GET /api/v1/diagnostics/dump

	system/network
	GET /api/v1/system/network
	GET /api/v1/system/network/ipv4
	GET /api/v1/system/network/ipv4/override
	PUT /api/v1/system/network/ipv4/override
	DELETE /api/v1/system/network/ipv4/override

	time
	GET /api/v1/time
	GET /api/v1/time/system
	GET /api/v1/time/ptp
	GET /api/v1/time/ptp/profile
	PUT /api/v1/time/ptp/profile
	GET /api/v1/time/sensor

	TCP API
	Querying Sensor Info and Intrinsic Calibration
	Querying Active or Staged Parameters
	Setting Configuration Parameters

	API Changelog
	Alerts and Errors
	Table of All Alerts and Errors

	Lidar Packet Format Update
	Inter-sensor Interference Mitigation
	Two Sensor Example

	Drivers
	PTP Profiles Guide
	PTP Profiles
	PTP HTTP API
	Enabling the PTP profiles
	Example using cURL
	Example using Httpie

	Sync Verification

	PTP Quickstart Guide
	Assumptions
	Physical Network Setup
	Third Party Grandmaster Clock
	Linux PTP Grandmaster Clock

	Example Network Setup
	Installing Necessary Packages
	Ethernet Hardware Timestamp Verification
	Configurations
	Configuring ptp4l for Multiple Ports
	Configuring ptp4l as a Local Master Clock
	Configuring phc2sys to Synchronize the System Time to the PTP Clock
	Configuring Chrony to Set System Clock Using PTP

	Verifying Operation
	Sensor PTP Sync Verification
	LinuxPTP PMC Tool
	Tested Grandmaster Clocks

	Networking Guide
	Networking 101
	Windows
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	macOS
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	Linux
	Connecting the Sensor
	Setting the Interface to Link-Local Only
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	GPS/GNSS Synchronization Guide
	Setting up your GPS/GNSS
	Connecting the Hardware
	Configuring the Ouster Sensor
	Checking for Sync

	Updating Firmware
	Downgrading Firmware

	Firmware Changelog

