
Ouster Detect User Manual
CONFIDENTIAL, preliminary draft v0.2

Ouster

Mar 22, 2023

Contents
1 Important Safety Information 6

1.1 Safety & Legal Notices . 6
1.2 Proper Assembly, Maintenance and Safe Use . 9

1.2.1 Assemblage correct et utilisation sûre . 10

2 Ouster Detect Introduction 11
2.1 Additional Technical Documentation . 11

3 Using an Edge Processor 12
3.1 Requirements . 12

3.1.1 Catalyst Pro . 12
3.1.2 Catalyst Lite . 13

3.2 Connecting Sensors to the Edge Processor . 13
3.3 Connecting to the Edge Processor . 15

4 Using 3rd Party Hardware 15
4.1 Computer Requirements . 15
4.2 Installing Docker . 16
4.3 Installing the Ouster Agent . 16
4.4 Installing Ouster Detect Docker Images . 17

4.4.1 Install Detect from Compressed Archive . 17
4.5 Running Docker Images . 17

5 Getting Started with Ouster Detect 18
5.1 Connecting to the Ouster Detect GUI . 18
5.2 Activating the Software License . 19

6 GUI Overview 20
6.1 Layout . 20

6.1.1 Header . 21
6.1.2 Left Pane - Viewer . 22
6.1.3 Left Pane - Setup . 23
6.1.4 Right Pane - Viewer . 23
6.1.5 Right Pane - Setup . 24
6.1.6 Feedback Line . 25
6.1.7 Viewport . 25
6.1.8 Content . 26

6.2 Viewer . 27
6.2.1 Tools . 27
6.2.2 Left Pane . 28
6.2.3 Perception . 28
6.2.4 Zones . 29
6.2.5 Clouds . 29
6.2.6 Right Properties Pane . 30

6.3 Zones . 30
6.3.1 Zone Workflow . 31

6.4 Recording . 31
6.4.1 Recording a PCAP . 32
6.4.2 Downloading a Recording . 32

2

6.4.3 Deleting a Recording . 33
6.4.4 Important Recording Notes . 33

6.5 Sensor Management . 33
6.5.1 Adding Sensors . 33
6.5.2 Removing Sensors . 34
6.5.3 Configuring Sensors . 34
6.5.4 Sensor Alignment Tools . 34
6.5.5 General Alignment Procedure . 37

6.6 Diagnostics . 38
6.7 Settings . 38

6.7.1 JSON Pane . 40
6.8 Lidar Hub . 40
6.9 Preferences . 40

7 Lidar Hub Overview 42
7.1 Architecture . 42

7.1.1 Application Configuration . 43
7.1.2 Primary application Fields . 43
7.1.3 Optional Application Fields . 43
7.1.4 Perception Streams Configuration . 44
7.1.5 Primary perception Fields . 45
7.1.6 Optional perception Fields . 45

7.2 System Logging . 47
7.2.1 Configuration . 47
7.2.2 Primary logging Fields . 47
7.2.3 Optional logging Fields . 47

7.3 Ouster Connect . 48
7.3.1 Configuration . 48
7.3.2 Primary ouster_connect Fields . 48
7.3.3 Optional ouster_connect Fields . 48

7.4 World . 49
7.4.1 Configuration . 50
7.4.2 Primary World Fields . 50
7.4.3 Optional World Fields . 50

7.5 System Diagnostics . 50
7.5.1 Output: Attributes . 51
7.5.2 Output: Telemetry . 55
7.5.3 Output: Alerts . 59

7.6 Aggregation . 60
7.6.1 Configuration . 61
7.6.2 Primary aggregation Fields . 61
7.6.3 Optional aggregation Fields . 61
7.6.4 Output: Real-Time Events . 62
7.6.5 Output: Timeseries Aggregates . 63

7.7 JSON Data Streams w/Down-sampling, Batching & Field Mapping 67
7.8 MQTT Publisher Configuration . 68

7.8.1 Primary mqtt_publishers Fields . 68
7.8.2 Optional mqtt_publishers Fields . 69

7.9 TCP Relay Server Configuration . 70
7.9.1 Primary tcp_servers Fields . 71
7.9.2 Optional tcp_servers Fields . 71

7.10 Event Data Recorder . 72

3

7.10.1 Configuration . 72
7.10.2 Primary data_recorder Fields . 73
7.10.3 Optional data_recorder Fields . 74
7.10.4 Accessing Event Data . 74

7.11 JSON Data Recorder . 74
7.11.1 Configuration . 74
7.11.2 Primary data_recorder Fields . 75
7.11.3 Optional data_recorder Fields . 76
7.11.4 Accessing JSON Data . 76

7.12 Binary Data Recorder . 76
7.12.1 Configuration . 76
7.12.2 Primary data_recorder Fields . 77
7.12.3 Optional data_recorder Fields . 77
7.12.4 Accessing Binary Data . 78

8 Connecting to Output 79
8.1 Object List Data . 80
8.2 Occupation Data . 85
8.3 Aggregation . 87
8.4 Telemetry Data . 91
8.5 Alert Data . 96
8.6 Publishing Configuration . 100
8.7 Downsampling and Batching . 100
8.8 Mapping . 101

8.8.1 Publishing Protocols . 101
8.9 TCP stream . 101
8.10 MQTT . 103

9 Networking Guide - Ouster sensors 104
9.1 Networking Terminology . 104
9.2 Windows . 105

9.2.1 Connecting the Sensor . 106
9.2.2 The Sensor Homepage . 106
9.2.3 Determining the IPv4 Address of the Sensor . 106
9.2.4 Determining the IPv4 Address of the Interface . 107
9.2.5 Setting the Host Interface to DHCP . 108
9.2.6 Setting the Host Interface to Static IP . 109
9.2.7 Finding a Sensor with mDNS Service Discovery . 109

9.3 macOS . 110
9.3.1 Connecting the Sensor . 110
9.3.2 The Sensor Homepage . 110
9.3.3 Determining the IPv4 Address of the Sensor . 112
9.3.4 Determining the IPv4 Address of the Interface . 113
9.3.5 Setting the Host Interface to DHCP . 114
9.3.6 Setting the Host Interface to Static IP . 115
9.3.7 Finding a Sensor . 116

9.4 Linux . 118
9.4.1 Connecting the Sensor . 118
9.4.2 Setting the Interface to Link-Local Only . 119
9.4.3 The Sensor Homepage . 121
9.4.4 Determining the IPv4 Address of the Sensor . 121
9.4.5 Determining the IPv4 Address of the Interface . 123

4

9.4.6 Setting the Host Interface to DHCP . 124
9.4.7 Setting the Host Interface to Static IP . 126
9.4.8 Finding a Sensor with mDNS Service Discovery . 127

10 Perception API 128
10.1 default . 128
10.2 Sensor Management . 128
10.3 Settings . 130
10.4 Registration . 131
10.5 Execution . 133
10.6 Point Zones . 134
10.7 Access . 135
10.8 Diagnostics . 135
10.9 Static . 136

11 Appendix 137
11.1 Code Samples . 137

11.1.1 TCP Server Heartbeat Setup . 137
11.1.2 Simple Example . 137
11.1.3 Receiving objects from object_list . 140
11.1.4 Reading zone data from occupations . 141

11.2 Sensor Placement . 142
11.2.1 Tips for individual sensor placement . 142
11.2.2 Multi-Sensor Usage . 142
11.2.3 Procedure for planning multi sensor locations . 143

11.3 Enabling PTP & Phase Lock . 144
11.3.1 Enabling PTP on Catalyst as the Master Clock . 144

11.4 Enabling PTP & Phase Lock on Ouster Sensor . 145

HTTP Routing Table 146

5

1 Important Safety Information

1.1 Safety & Legal Notices
All Ouster sensors have been evaluated to be Class 1 laser products per 60825-1: 2014 (Ed. 3) and
operate in the 865nm band.

Tous les capteurs Ouster répondent aux critères des produits laser de classe 1, selon la norme IEC
60825-1: 2014 (3ème édition) et émettent dans le domaine de l’infrarouge, à une longueur d’onde
de 865nm environ.

FDA 21CFR1040 Notice: All Ouster sensors comply with FDA performance standards for laser prod-
ucts except for deviations pursuant to Laser Notice No. 56, dated January 19, 2018.

Notice FDA 21CFR1040: Tous les capteurs Ouster sont conformes aux exigences de performances
établies par la FDA pour les produits laser, à l’exception des écarts en application de l’avis nº56, daté
du 19 janvier 2018.

Figure 1.1: Class 1 Laser Product

Figure 1.2: Caution “Sharp Edges”

The following symbols appear on the product label and in the usermanual have the followingmeaning.

CAUTIONS

6

Figure 1.3: This symbol indicates that the sensor emits laser radiation.

Figure 1.4: This symbol indicates the presence of a hot surface that may cause skin burn.

All Ouster sensors are hermetically sealed unit, and are non user-serviceable.

Use of controls, or adjustments, or performance of procedures other than those specified herein,
may result in hazardous radiation exposure.

Use of any Ouster sensor is subject to the Terms of Sale that you agreed and signed with Ouster
or your distributor/integrator. Included in these terms are the prohibitions of:

Removing or otherwise opening the sensor housing

Inspecting the internals of the sensor

Reverse-engineering any part of the sensor

Permitting any third party to do any of the foregoing

Operating the sensor without the attached mount that is shipped with the sensor, or attaching
the sensor to a surface of inappropriate thermal capacity runs the risk of having the sensor
overheat under certain circumstances.

The Ouster sensor features a modular cap design to enable more flexible mounting and integra-
tion solutions for the sensor.

The modular cap design increases design flexibility but it does not remove the need for ther-
mal management on top of the sensor. The attached radial cap serves an important thermal
management purpose and the sensor will not operate properly without a cap.

Operation for extended periods of time without the cap will result in system errors and the sen-
sor overheating. The cap can be replaced with alternative solutions but it cannot be left off
altogether.

If you wish to operate the sensor with a custom mounting solution, please contact our Field Ap-
plication Team and we can answer your questions and provide guidance for achieving proper
operations.

This product emits Class 1 invisible laser radiation. The entire window is considered to be the
laser aperture. While Class 1 lasers are considered to be “eye safe”, avoid prolonged direct view-

7

https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.atlassian.net/servicedesk/customer/portal/8

ing of the laser and do not use optical instruments to view the laser.

When operated in an ambient temperature >40�°C, the metallic surfaces of the sensor may be
hot enough to potentially cause skin burn. Avoid skin contact with the sensor’s base, lid and
the heatsink when the sensor is operated under these conditions. The sensor should not be
used in an ambient temperature above 60°C. The maximum safety certified ambient operating
temperature is 60°C.

PRECAUTIONS:

Tous les capteurs Ouster sont des unité hermétiquement scellée, qui ne peut être entretenue ou
modifiée par l’utilisateur.

L’utilisation de commandes, de réglages, ou l’exécution de procédures autres que celles spéci-
fiées dans le présent document peuvent entraîner des rayonnements laser dangereux.

L’utilisation d’un capteur Ouster est soumise aux conditions de vente signées avec Ouster ou le
distributeur/intégrateur, incluant l’interdiction de:

Retirer ou ouvrir de quelque façon le boîtier du capteur

Analyser les composants internes du capteur

Pratiquer la rétro-ingénierie de toute ou partie du capteur

Autoriser une tierce personne à mener les actions listées ci-dessus

L’utilisation du capteur sans le support (fourni avec les capteur) ou sans contact avec une sur-
face ayant des capacités thermiques adéquates peut entraîner une surchauffe du capteur dans
certaines conditions.

Ce capteur présente une conception avec un dissipateur thermique supérieur modulaire, ceci
pour apporter plus de flexibilité de montage et d’intégration au capteur.

Cette conception modulaire augmente la flexibilité de conception mais ne supprime pas le be-
soin de dissipation thermique au-dessus du capteur. Le dissipateur thermique radial fourni est
essentiel à une bonne gestion thermique. Le capteur ne fonctionnera pas correctement sans
cette pièce.

Une utilisation prolongée du capteur sans le dissipateur thermique supérieur peut résulter à des
erreurs système ainsi qu’à une surchauffe du capteur pouvant aller jusqu’à son extinction. Le
dissipateur thermique fourni peut être remplacé par une autre solution de dissipation thermique
adéquate, mais ne doit pas être simplement retiré.

Si vous souhaitez utiliser votre capteur avec une dissipation thermique personnalisée, merci de
contacter notre Équipe Support qui pourra répondre à vos questions et vous apporter le support
et le conseil nécessaire.

Ce produit émet un rayonnement laser invisible de classe 1. L’ouverture de sortie du laser est
constituée par la fenêtre du capteur dans sa totalité. Même si les lasers de classe 1 ne sont pas
considérés comme dangereux pour les yeux, ne regardez pas directement le rayonnement laser
de façon prolongée et n’utilisez pas d’instruments optiques pour observer le rayonnement laser.

Lors d’une utilisation à température ambiante supérieure à 40°C, la surface métallique du cap-

8

https://ouster.atlassian.net/servicedesk/customer/portal/8

teur peut présenter des risques de brûlures pour la peau. Dans ces conditions, il est important
d’éviter tout contact avec la partie supérieure, la base ou le dissipateur thermique du capteur.
Le capteur ne doit pas être utilisé à une température ambiante supérieure à 60˚C. 60˚C est la
température maximale certifiée d’opération sûre du capteur.

Equipment Label: Includesmodel and serial number and a notice that states the unit is a Class 1 Laser
Product, is affixed to the underside of the Sensor Enclosure Base. It is only visible after the attached
mount with which the Sensor is shipped, is removed. For location details please refer to the hardware
user manual.

L’étiquette de l’équipement, comprenant le modèle, le numéro de série, et la classification du produit
laser (ici, classe 1), est apposée au-dessous de la base du boîtier du capteur. Il n’est visible qu’après
avoir retiré le diffuseur de chaleur avec lequel le capteur est expédié. L’emplacement est décrit pré-
cisément dans le manuel d’utilisation du matériel.

Electromagnetic Compatibility: The Ouster sensors are an FCC 47 CfR 15 Subpart B device. This
device complies with part 15 of the FCC Rules. Operation is subject to the following conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

“Ouster” and Ouster sensors are both registered trademarks of Ouster, Inc. They may not be used
without express permission from Ouster, Inc.

If you have any questions about the above points, contact us at legal@ouster.io.

1.2 Proper Assembly, Maintenance and Safe Use
All Ouster sensors can be easily set up by following the instructions outlined in the hardware user
manual. Any mounting orientation is acceptable. Each sensor is shipped with an attached mount that
can be used for test or normal use within the specified operating conditions. The sensor may also be
affixed to any other user specific mount of appropriate thermal capacity. Please contact Ouster for
assistance with approving the use of user specific mounting arrangements.

Any attempt to utilize the sensor outside the environmental parameters delineated in the relevant data
sheet for your Ouster sensor may result in voiding the warranty.

When power is applied, the sensor powers up and commences boot-up with the laser disabled. The
boot-up sequence is approximately 60s in duration, after which the internal sensor optics subassem-
bly commences spinning, the laser is activated, and the unit operates in the default 1024 x 10 Hzmode.
When the sensor is running, and the laser is operating, a faint red flickering light may be seen behind
the optical window.

Note: All Ouster sensors utilize an 865nm infrared laser that is only dimly discernible to the naked
eye. The sensor is fully Class 1 eye safe, though Ouster strongly recommends against peering into
the optical window at close range while the sensor is operating. Ouster sensors are equipped with a
multi-layer series of internal safety interlocks to ensure compliance to Class 1 Laser Eye Safe limits.

All Ouster sensors are hermetically sealed units, and are not user-serviceable. Any attempt to unseal
the enclosure has the potential to expose the operator to hazardous laser radiation.

9

mailto:legal@ouster.io

The sensor user interface may be used to configure the sensor to a number of combinations of scan
rates and resolutions other than the default values of 1024 x 10 Hz resolution. In all available combi-
nations, the unit has been evaluated by an NRTL to remain within the classification of a Class 1 Laser
Device as per IEC 60825-1:2014 (Ed. 3).

1.2.1 Assemblage correct et utilisation sûre

Tous les capteurs Ouster s’installe facilement en fixant la base sur un support percé de trous concor-
dants, et en suivant les instructions d’interconnexion décrites dans le manuel d’utilisation dumatériel.
Toute orientation de montage est acceptable. Chaque capteur est expédié équipé d’un dissipateur de
chaleur, utilisable en phase de test et en conditions normales. Néanmoins tout autre support présen-
tant une capacité thermique appropriée pour l’application de l’utilisateur peut être utilisé. Veuillez
contacter Ouster dans le cas où un montage spécifique à votre application serait nécessaire.

Toute tentative d’utilisation du capteur en dehors des paramètres environnementaux définis dans la
fiche technique de votre capteur Ouster peut entraîner l’annulation de la garantie.

Lorsque le capteur est sous tension, celui-ci démarre et commence son initialisation avec le laser
désactivé. Le temps de démarrage est d’environ 60s, après quoi le sous-système optique entre en ro-
tation et le laser est activé, le capteur opère alors dans son mode par défaut de 1024 x 10 Hz. Lorsque
le capteur est en marche et que le laser est activé, on peut apercevoir une faible lumière rouge vacil-
lante derrière la vitre teintée. Tous les capteurs Ouster utilisent une longueur d’ondes infra-rouge de
865nm à peine perceptible pour l’œil humain, et le rayonnement laser IR émis est sans danger pour les
yeux. Cependant, bien que les rayonnements laser de classe 1 soient sans danger dans des conditions
raisonnablement prévisibles, Ouster recommande fortement de ne pas regard er fixement la vitre tein-
tée pendant que le capteur est en marche. Tous les capteurs Ouster sont des unités hermétiquement
scellées, qui ne peuvent pas être entretenues, modifiées ou réparées par l’utilisateur. Toute tentative
d’ouverture du boîtier a pour risque d’exposer l’opérateur à un rayon-nement laser dangereux.

Les capteurs Ouster sont équipés d’une série de dispositifs de sécurité à plusieurs niveaux, de façon à
assurer en toutes circonstances le respect des limites d’irradiance correspondant aux rayonnements
lasers de classe 1, sans danger pour les yeux.

L’interface utilisateur du logiciel du capteur peut être utilisée pour configurer le capteur selon un cer-
tain nombre de combinaisons de vitesses de balayage et de résolutions autres que les valeurs utilisées
par défaut, respectivement de 1024 x 10 Hz.

10

2 Ouster Detect Introduction

Ouster Detect is a perception software suite that detects, tracks, and classifies objects from the
Ouster digital lidar sensor point cloud streams. Ouster Detect is the foundational building block of
Ouster Gemini Smart Infra Solutions platform.

Ouster Detect detects objects, their current geo-position, speed, and direction of movement with a
high degree of accuracy. Customers can ingest this data that are commonly referred to as “object list”,
as JSON stream over either MQTT or TCP protocols into their custom business logic pipelines convert-
ing the 3D lidar detection data into actionable business outcomes. Ouster Detect reduces integration
time for customers by providing a highly configurable set of options for filtering, down-sampling, and
basic aggregation of object data by zone or class-type. Ouster Detect is a containerized software
product that can be deployed on customer-provided or Ouster-provided edge compute nodes. It sup-
ports all Ouster digital lidar sensor models (Rev6 and later), channel configurations (128 & 64), and
beam configurations (below/above/uniform).

Figure 2.1: Ouster Gemini Overview

This Ouster Detect User Manual provides in-depth information on how to install, setup, and configure
Ouster Detect for various customer uses.

2.1 Additional Technical Documentation
The Ouster sensor documentation is meant to allow the users to take advantage of all the features
that are available with Ouster Sensors.

Ouster Python SDK

Connecting to Sensor

Firmware User Manual

HTTP API and TCP-API.

Hardware User Manual

For more information, please visit Ouster Detect or contact our Field Application Team.

11

https://static.ouster.dev/sdk-docs/index.html
https://static.ouster.dev/sensor-docs/image_route1/image_route2/connecting/connecting-to-sensors.html#connecting-to-sensor
https://static.ouster.dev/sensor-docs/index.html
https://static.ouster.dev/sensor-docs/image_route1/image_route2/common_sections/API/http-api-v1.html
https://static.ouster.dev/sensor-docs/image_route1/image_route2/common_sections/API/tcp-api.html#tcp-api-guide
https://ouster.com/downloads/
https://ouster.com/software/gemini/
https://ouster.atlassian.net/servicedesk/customer/portal/8

3 Using an Edge Processor

3.1 Requirements
Ouster Detect requires optimized AI Compute engines for multi-sensors spatial intelligence, Ouster
recommends the use of one of two types mentioned below:

Note: These edge computers can also be purchased from Ouster, please reach out to Ouster Sales.

3.1.1 Catalyst Pro

Highlights

Intel® Core™ i7-9700TE 8 Core processor onboard

16GB RAM

256GB SSD Storage

6x GbE LAN RJ45 Ports

8 in / 8 out (Isolated) GPIO

Power switch, remote switch, AT/ATX select

Status LEDs (HDD, Power, Network)

Operating temperature: -25 °C ~ 70 °C

Dimensions: 240 (W) x 261 (D) x 79.2 (H) mm

Figure 3.1: Catalyst Pro

12

https://ouster.com/talk-to-sales/

3.1.2 Catalyst Lite

Highlights

Intel® Celeron® J1900 4 Core processor onboard

8GB RAM

128GB SSD Storage

2x GbE LAN RJ45 Ports

4 in / 4 out (Isolated) GPIO

Power switch, remote switch, AT/ATX select

Status LEDs (HDD, Power, Network)

Operating temperature: -25 °C ~ 70 °C

Dimensions: 150 (W) x 105 (D) x 49 (H) mm

Figure 3.2: Catalyst lite

The Catalyst devices have a number of built-in Ethernet interfaces on both the front and the back
of the unit. Several of these interfaces come pre-configured and are intended for specific network
connections.

3.2 Connecting Sensors to the Edge Processor
Sensors can be connected directly to edge processors or indirectly via other networking hardware
such as a network switch. If other networking hardware is used to connect multiple Ouster sensors to
a single Catalyst interface; the bandwidth of the interface and hardwaremust be carefully considered.

The Catalyst-Pro has 4 available ethernet ports for sensor connections (LAN4-7) while the Catalyst-
lite has one (LAN2). These designated ports will automatically distribute DHCP network addresses if
a sensor is configured for DHCP use (default for Ouster sensors).

Ouster sensors will always broadcast an mDNS hostname when directly connected to a Catalyst de-

13

vice. If other networking devices are between the sensor and Catalyst, these devices will need to allow
mDNS traffic. The mDNS hostname of Ouster sensors has the form os-XX.localwhere XX is the sensor
serial number.

It is recommended to use the mDNS hostname to communicate with sensors when available as they
will never change.

Table 3.1: RCO-6000

Port Address Range

LAN 3 10.125.20.2-10.125.20.22

LAN 4 10.125.21.2-10.125.21.22

LAN 5 10.125.22.2-10.125.22.22

LAN 6 10.125.23.2-10.125.23.22

Figure 3.3: RCO-6000

14

Table 3.2: RCO-1000

Port Address Range

RCO-1010A LAN 2 10.125.20.2-10.125.20.22

Figure 3.4: RCO-1000

3.3 Connecting to the Edge Processor
LAN1 on both the Catalyst-Lite and Catalyst-Pro is designated for connection to a users network. This
interface will accept a DHCP address if connected to a network with a DHCP server. This interface
will also broadcast an mDNS hostname if connected to a network which supports mDNS traffic. The
hostname will be of the form edgeproc-XX where XX is a hash unique to the device.

4 Using 3rd Party Hardware

4.1 Computer Requirements
When runningOuster Detect on customer-provided hardware, it is important to ensure that the hard-
ware specifications meet the minimum required specifications for the software. The specifications
depend on the number of lidars in use with a particular computer. Ouster Detect is built to run on
64-bit Intel or AMD CPUs. The number of required cores scales with the number of lidars that will be
used with the system.

Ouster Detect requires n + 1 cores, where n is the number of lidars in use on a system. For each lidar,
Ouster Detect requires 2 GB of RAM. With this in mind, a computer connected to three lidars would
require four CPU cores and 6 GB of RAM. Each core must be at least equivalent to a 9th generation
Intel Core i7.

Note: Ouster Detect currently is limited to use on a Linux based operating system, Ubuntu 20.04 or
later.

If your computer hardware does not meet the requirement, please refer to Requirements.

15

4.2 Installing Docker

Note: When installing Docker, Ouster strongly recommends the instructions provided. Docker pack-
ages from snap package manager and Docker compose V1 are not compatible. However, Docker compose
v2 is compatible.

Ouster Detect is designed using a microservices architecture. The system is broken up into a num-
ber of component services, most of which run inside of docker containers. As such, docker must be
installed and running on all computers on which Ouster Detect will be used. In addition to the docker
engine, docker compose must also be installed. Compose is used to orchestrate the set of containers
that make up Ouster Detect’s functionality.

The docker website provides instructions for installing the docker engine and docker compose for a
variety of supported platforms. If the customer does not already have a Linux-based operating system
installed on their computer, Ouster recommends installing a recent version of Ubuntu Server edition.
The docker website provides instructions specific to installing docker on Ubuntu systems.

Once the docker engine is installed, Ouster recommends completing the docker Linux post-installation
instructions. This will ensure that the user account used by the customer will be able to interact
directly with the docker daemon.

4.3 Installing the Ouster Agent
The Ouster Agent is responsible for handling software licensing and generating unique identifiers for
each computer running Ouster Detect. The Agent is distributed as a Debian package. This package
may be installed on any modern Debian-based Linux distribution that includes systemd version 236 or
newer. The docker daemon must be installed on the customer computer prior to installing the Ouster
Agent.

The Agent Debian package installs both the Ouster Agent daemon, which is managed by systemd, and
a software license server daemon, also managed by systemd. In addition, the Agent package installs a
docker compose file. This file is used to orchestrate the set of docker containers that make up Ouster
Detect and is located at /opt/ouster/compose.yaml. The customer must use this file to install, update,
start, and stop Ouster Detect.

16

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

4.4 Installing Ouster Detect Docker Images
Once both docker and the Ouster Solutions Agent have been successfully installed, the usermust next
retrieve the set of docker images that make up Ouster Detect.

These images are distributed through a docker registry, please contact Ouster Support if you have
more questions.

4.4.1 Install Detect from Compressed Archive

Contact Ouster sales representative or Field Engineer for access to the latest Detect compressed
archive.

Install docker engine on the host machine. See Docker Engine Installation for more information.

Extract the Detect archive to a directory on the host machine

tar xvf /path/to/Detect-{OS}-{version}.tar.gz

Move into the extracted directory and run the Detect script

./setup.sh

Optional validate the install

docker pswill show the Detect containers running with a tagmatching the version of Detect
you installed.

dpkg -l ouster-solutions-agent will show the version of the Agent you installed.

systemctl status ouster-solutions-agent will show the the Agent service running.

Note: When updating the images, Ouster Detect must be restarted in order to take advantage of the
updated software.

The next section addresses how to start, stop, and restart Ouster Detect.

4.5 Running Docker Images
With the Ouster Detect’s docker images retrieved, the system may be started.

All commands in this section assume that the user is in the directory /opt/ouster, which is where the
compose.yaml file is located. To start the Ouster Detect system, the user must execute the following
command,

$ docker compose up -d

This command will create containers from each of the Ouster Detect docker images, create a docker
volume where persistent files will be stored, and connect all containers together on a docker bridge

17

https://ouster.com/tech-support
https://docs.docker.com/engine/installation

network. All containers make use of docker’s built-in logging functionality. To view the container logs,
the user must execute the following,

$ docker compose logs -f

This command will display the history of logs and also continue to display new log entries as they
arrive from Ouster Detect. The user may exit viewing the logs by issuing a CTRL-C.

Once the Ouster Detect containers are brought up for the first time, the system is configured to restart
each time the computer reboots. If the user would like to stop the containers manually, the following
command must be issued from the /opt/ouster directory,

$ docker compose down

When a new version of Ouster Detect has been retrieved, the user must restart Ouster Detect in order
take advantage of the updated software. Ouster Detect may be restarted by issuing the following
command,

$ docker compose restart

5 Getting Started with Ouster Detect

5.1 Connecting to the Ouster Detect GUI
Once the Catalyst hardware is successfully connected to the customer network, or once the customer-
supplied computer is connected to the network and the Ouster Detect software has been installed
and started, the user may then connect to the computer using a web browser. This will allow the user
to begin setting up Ouster Detect. For the best browser experience, Ouster recommends that the
customer use a computer with a discrete GPU and the Google Chrome browser.

Assuming that the computer running Ouster Detect has an IP address of 192.168.1.1, the user may
establish an initial connection to Ouster Detect by pointing their browser at https://192.168.1.1.

When accessing the Detect Viewer, user may see a warning that the site is not secure. This is because
the Detect Viewer is served using a self-signed certificate. If you are using Chrome, you can bypass
this warning by clicking on the Advanced link and then clicking on Proceed to {detect_url} (unsafe).

The web interface to Ouster Detect is protected using HTTP authentication. The user will be prompted
for credentials when first accessing the GUI. Default credentials (case sensitive) are as follow:

Username: ouster

Password: stone-pass-fill

The password may be changed using the REST API. All calls made to Ouster Detect’s REST API also
require authentication with this username and password.

Note: Ouster Detect viewer is accessed through port 443. Please configure your networking accord-

18

ingly to enable communication through these ports.

5.2 Activating the Software License
Ouster Detect Software package will be sent to the customer along with the software entitlement ID.
The entitlement ID is required to activate the Ouster Detect software license.

Example Key

f963870f-1c11-46e6-8639-479da2a5732f

Note: It is not possible to transfer a license from one machine to another. Your license is tied to your
hardware. If you have any trouble activating the license, please reach out to Ouster Support.

19

https://ouster.com/tech-support

6 GUI Overview

6.1 Layout
Ouster Detect has two distinct layouts, one that includes a 3D viewport and one without. These layout
accommodate the different modes/sections of the app.

With a 3D viewport is divided into five areas.

Header

Left Pane

Viewport

Right Pane

Feedback Line

Figure 6.1: With 3D Viewport

20

Without a 3D viewport is divided into three areas.

Header

Content

Feedback Line

Figure 6.2: Without 3D Viewport

6.1.1 Header

Figure 6.3: Header Overview

The header contains application information, the local scene name and the navigation menu.

The Application Information next to the logo displays the running front and backend end ver-
sion. The user can copy to their systems pasteboard the version by clicking on the relative links

The Scene Name is a user defined identifier for the viewing setup, its value would be reflected
on the browser’s tab name and is exposed under preferences.

The Navigation Menu allow the user to navigate to a desired sections sucha as:

Viewer: Main viewing section of the perception output

Setup: Section that provides the user with tools and info to position the sensors and cre-
ate/define zones

Diagnostics: Section with information for the status of the edge computer and the sensors
attached

Settings: Section exposing all modifiable parameters for the system

21

6.1.2 Left Pane - Viewer

Fig. 6.4: Left Pane Perception Fig. 6.5: Left Pane Sensor Management

In Viewer section: It will display options for the system’s key structures - Perception, Zones and
Clouds

Perception: Hosts an array of icons to control the display of different perception elements and a
list of the available classes with options to control their visibility, point size and color.

Zones: Lists the available types with options to control their visibility and color.

22

Clouds: Lists the active sensors with options their visibility, point size and color.

6.1.3 Left Pane - Setup

In Setup section: It will display options for configuring sensors to the system and the license section

6.1.4 Right Pane - Viewer

Fig. 6.6: Tracked Objects Fig. 6.7: Record Fig. 6.8: Preferences

In Viewer section there are three tabs

Tracked: Displays lists and actions to highlight extra information in the viewport. Two list are
available, the currently selected set and the available objects present in the scene and toggle
buttons to assist selecting/deselecting tracked objects.

Record: Hosts lists and actions for recording the raw point clouds from the sensors.

Preferences: User preferences options.

23

6.1.5 Right Pane - Setup

Fig. 6.9: Sensor Management Fig. 6.10: Zones

In Setup section: It will host list and options for the sensor and zones

Sensor Management: Lists connected sensors and actions to store/align them.

Zones: Lists created zones and options to modify their properties.

24

6.1.6 Feedback Line

The feedback line provides information to the user when interacting with the scene.

Figure 6.11: Feedback

6.1.7 Viewport

The 3D world with an overlay of tools and options the user can interact with.

Top Left Corner has an array of buttons to switch to a predefined direction.

Top Middle has a panel that indicate the selected tool and the available tools for the section.

Top Right Corner has a button to spin the scene around its interest point.

Middle Right Side convenient actions buttons reflecting the actions section in the right panel.

BottomMiddle Side playback controls.

Lower Left Corner displays the current local time.

Middle Left Side toggle buttons controlling the visibility helpful elements, cartesian grid, polar
grid and unit axis.

Figure 6.12: Viewport

25

6.1.8 Content

Sections with a content view are text based views with top row with buttons to control various desired
actions.

Figure 6.13: Content

26

6.2 Viewer
The Viewer is the section that the user can view the scene and select the output of the perception
server.

Figure 6.14: Ouster Detect’s Viewer section

6.2.1 Tools

Select

Used to select one or more objects being tracked, and when selected, their info bubble is displayed
and listed under Tracked Objects List on the right.

Figure 6.15: Viewer Select

27

Measure

The measure tool allows to measure distances and display the coordinates of the ground point under
the mouse cursor.

Figure 6.16: Ouster Detect’s viewer tool options

6.2.2 Left Pane

Dedicated areas for the system’s key structures - Perception, Zones and Clouds. Please refer to Left
Pane - Viewer.

6.2.3 Perception

Figure 6.17: Perception

A list of the available classes with options to control their visibility, point size and color.

Perception: Hosts an array of icons to control the display of different perception elements, from left
to right:

28

Figure 6.18: Perception Controls

Ring icon - toggles the visibility of the tracked object’s location.

Bubble icon - toggles the visibility of the tracked object’s informational labels.

Cloud icon - toggles the visibility of the tracked object’s point clouds.

Cube icon - toggles the visibility of the tracked object’s bounding boxes.

Trident icon - toggles the visibility of the tracked object’s top corners.

Dotted line icon - toggles the visibility of the tracked object’s trajectory.

Image icon - toggles the visibility of the sensors near IR.

6.2.4 Zones

Lists the available types with options to control their visibility and color.

Figure 6.19: Zones

6.2.5 Clouds

Lists the active sensors background point cloudswith options to control their visibility, point size, color
and colorization method.

29

Figure 6.20: Zones

6.2.6 Right Properties Pane

Displays lists and actions to highlight extra information in the viewport. Two list are available, the
currently selected set and the available objects present in the scene and toggle buttons to assist
selecting/deselecting tracked objects

For more information, please refer to Right Pane - Viewer.

6.3 Zones
Zones can be configured and viewed throughout the GUI. To go to the zone editing page choose Se-
tup/Zones.

Figure 6.21: Zone configuration page

The tool icons at the top of the 3D viewer provide editing and creation options for zones in the scene.
Different tool and panes are numbered in red. They are as follows:

30

Tool to select new zones. You can then use the mouse to click on a select a specific zone.

Tool to create a new Event, Inclusion or Exclusion zone.

Tool to enable the zone editing tool. Requires a zone to be pre-selected. You can move zone
vertices around with the tool.

Tool to enable the zone the add/remove vertex tool. Requires a zone to be selected.

Lists all the event zones. Zones can be selected through this pane.

Lists all point zones. Zones can be selected through this pane.

Pane for editing properties of specific zones. Also included in this pane is the ability to save,
delete and copy zones.

6.3.1 Zone Workflow

A typical workflow for zones creation occurs after the sensors have been setup. Steps are:

Identify if there are areas that are not required for object tracking. This can include vegetation
or area’s where there are objects not of interest. Both exclusion and inclusion zones can be used
to set this up. Exclusion zones takes priority, and nothing will be detected inside an exclusion
zone. Inclusion zones can be used to pick specific area’s of interest. Note that if there are any
inclusion zones then only points in inclusion zones will be included.

Draw the zones based on your analysis from a top down view. Edit the zone min and max height
in the properties pane. Name them appropriately for situational awareness.

Create event zones based on area’s where you want specific notification of objects. Set a de-
scriptive name.

Make any modification to the zones as required based on tracked objects.

6.4 Recording
The Recording tab of Ouster Detect provides the capability to capture raw point clouds, in .pcap for-
mat, and metadata for an installation. The dataset can be downloaded along with the current Ouster
Detect settings and the sensor metadata for each connected sensor. This tab can be navigated to by
clicking Viewer, then Record.

31

Fig. 6.22: Recording Pane
Fig. 6.23: Recording Example

6.4.1 Recording a PCAP

To record a PCAP, click the red icon next to Start Recording. This will begin the recording of the raw
point cloud from all sensors. To stop the recording, click the Stop Recording button that is present
when a recording is currently ongoing. The recorded file will be listed in the Recordings list.

The prefix for the recorded filename can be set within the Recording Default Prefix textbox. The re-
sulting file format is the defined prefix, the date of recording, and the time the recording commenced.
If no prefix is supplied, the filename will be just be the date and recording time.

An example of the resulting recorded data is shown in the image below.

office was selected as the prefix, resulting in a file called office_11_8__12_01_55.

6.4.2 Downloading a Recording

Once the data has been recorded, the data can be downloaded by selecting the recording in the list
and clicking the Download button. Three types of files will be downloaded:

.pcap file, storing the point cloud streamed data directly from the sensors,

.tar file, representing Ouster Detect’s settings at the time of recording,

one ormore .json files, representing the sensormetadata files which are necessary for playback.

32

6.4.3 Deleting a Recording

To delete a recording from disk, select a recording to discard in the recording list, then click the Delete
button. The recording will not be recoverable afterwards.

6.4.4 Important Recording Notes

It is important to note that PCAP Recording only records the raw point cloud data. It does not record
objects within the scene.

6.5 Sensor Management
The sensormanagement tab is responsible for the setup of sensors. This section provides an overview
for adding and removing sensors, sensor configuration, and sensor alignment. This tab can be navi-
gated to by clicking Setup, then Sensor Management.

6.5.1 Adding Sensors

To add sensors, the user must have already inputted a valid active license.

Refer to section Activating the Software License for these steps.

The user will not be able to add sensors greater than their license allows.

Assuming that the user’s license supports additional sensors, the left panel shows a list of the discov-
ered sensors on the local network which can be connected to Ouster Detect.

Figure 6.24: Adding Sensors Panel

33

The user can use the search bar to filter the sensors either by hostname or ip address. To add a sensor,
select one of the sensors in the left panel, and then click Add Sensor. The sensor will take about ten
seconds to be added. Bolded text in the panel indicates that the sensor is already connected to the
system. Once the sensor is added, the sensor’s point cloud should be viewable in the view pane.

If the sensor’s hostname or ip address is known, the user can skip sensor discovery by clicking Add
sensor by hostname, and then type in the sensor’s ip address or hostname.

6.5.2 Removing Sensors

To remove a sensor from Ouster Detect, select a bolded sensor hostname in the left panel, and then
click Remove Sensor. The point cloud will no longer be visible in the view pane.

6.5.3 Configuring Sensors

To view the sensor’s configuration page, select the sensor in the left panel and click Configure Sensor.
This will open the sensor’s dashboard, where it allows the user to update the firmware and edit the
sensor’s configuration.

Click the Documentation panel to see more information.

Figure 6.25: Sensor Configuration Page

6.5.4 Sensor Alignment Tools

After sensors have been added to Ouster Detect, the next step is to align the sensors. The right panel
shows a list of attached sensors to Ouster Detect. Each sensor has four buttons: Toggle visibility,
Adjust Point Size, Set as Reference, and Adjust Transform.

34

Figure 6.26: Sensor List and Alignment
35

An image of the alignment tool is shown below.

Figure 6.27: Alignment Tool

Using the Alignment Tool

The alignment tool is used to translate or rotate the point cloud. Clicking, holding then sliding the
arrows will result in a translation. Clicking, holding then sliding the circle will result in a yaw rotation.

It is possible to also adjust the pitch and roll of the point cloud. The circles are hidden by default, but
the hotkey L toggles the pitch and roll circle visibility.

IMU Pose and Pitch and Roll Alignment

The IMU Pose button aligns the transform with the positive z-axis pointing in the up direction relative
to gravity. Click IMUPose to align the sensor up relative to gravity. Then, clickX to view the side view of
the point cloud. If there appears to be some error, click L to show the pitch and roll circles, and adjust
the roll rotation until precise. Then repeat this for the pitch, by clicking Y, and adjusting the pitch using
the alignment tool. It is recommended to check the pitch and roll for alignment of the clouds, since
the IMU inherently has small measurement error. It also will ensure proper alignment between point
clouds from different LiDARs.

36

Automatic Alignment Tool

This tool automatically aligns two clouds together that have some overlapping field of view. It first
requires that the two clouds are roughly aligned to allow the algorithm to converge. Then a cloud needs
to be selected as a reference and another cloud as the unaligned cloud. The reference cloud will not
move after the automatic alignment, while the unaligned cloud will move to align with the reference
cloud. Select one cloud as the reference cloud by clicking set as reference for the cloud and then select
the unaligned cloud by clicking Adjust Transform. Then, in the right panel, click Align to perform the
automatic alignment. This will take about five seconds. Once the alignment is finished, the unaligned
cloud will havemoved, and the Reject and Accept buttons will highlight. If the alignment looks correct,
clickAccept to save the transform to disk. Sometimes, the tool may converge to a incorrect transform.
In this circumstance, click Reject to reverse the alignment. Retry the automatic alignment again, and
if it still fails, then resort to aligning using the manual alignment tool, or try again after better aligning
the two clouds.

Saving and Resetting Transforms

To return the cloud to its original position, click Reset to return to the cloud to its originally saved
orientation and position.

To save the transform, click Save. This will save the cloud’s position to disk and will be updated in the
viewer pane.

6.5.5 General Alignment Procedure

These are the general steps for LiDAR alignment.

It is recommended to align a single sensor at a time. Toggle the visibility of other clouds to only
show a single visible cloud. Select that point cloud in the right panel. The alignment tool will
appear.

Align the the transform with the positive z-axis pointing in the up direction relative to gravity.
Refer to section IMU Pose and Pitch and Roll Alignment for this procedure.

Use the alignment tool to adjust the yaw and translation for the point cloud. The position and
yaw of a single point cloud can be set arbitrarily based on preference. While not required, it is
recommended to set the point cloud’s ground/floor inline with the x-y plane. This will allow the
user to easily see the pitch and roll error of the point cloud, if the ground plane is flat.

Click Save Pose to save the cloud’s transform to disk. This will apply the transform in the viewer
page.

37

Multiple LiDAR Installations

The following steps are for multiple LiDAR installations and are a continuation of the previous steps.
The point clouds between LiDARs must be properly aligned together for cohesive object tracking.

Show the visibility of a single point cloud which overlaps with the originally aligned reference
cloud. If the two scenes do not have overlapping field of views, it’s difficult to align the two
clouds.

Align the cloud with the positive z-axis pointing in the up direction relative to gravity using the
steps outlined in the section IMU Pose and Pitch and Roll Alignment.

Roughly align the cloud to the originally set cloud using the alignment tool. Typically, the x, y and
z translation will need to be adjusted, as well as the yaw. Use physical references within the two
scenes to align the two clouds together.

Refer to section Automatic Alignment Tool and align a reference cloud to the current unaligned
cloud. The reference cloud should be an already aligned cloud that has the most overlapping
features with the unaligned cloud.

Repeat these steps for any additional sensors to be added to the scene.

6.6 Diagnostics
Ouster Detect system and Ouster sensor diagnostics can be seen in the GUI Diagnostics tab. Details
of the various Ouster sensor alerts can be found in the Ouster Firmware User Manual. Ouster Detect
system alerts are documented in the Alert Data (ref to alert data section) section.

The Diagnostics alert table view can be filtered by status, alert code and alert level. System and
Sensors sections can be collapsed to focus on specific alerts. Each alert can be expanded with further
details.

The Diagnostics tab offers access to log files, configuration files and API testing tools (Swagger UI).
Logs and configuration files can be downloaded for further investigation. Swagger UI webpages can
be used as documentation of Ouster Detect APIs as well as a test platform to issue commands to
running Ouster Detect components.

6.7 Settings
Ouster Detect’s processing settings can be changed on the settings page. When the settings page is
accessed current settings are fetched from the server.

Component on the settings page are numbered in red and are:

1. A selection drop down for either Perception or Lidar Hub settings.

2. A profile drop down to select from preconfigured profiles for different scenarios. Additional
changes to profiles can be made but they provide a good starting point.

3. Button to grab the current settings from the the server. This will erase local changes that have
been made to the settings

38

https://ouster.com/downloads/

Figure 6.28: Settings Page

4. Button to reset the settings back to the default settings for the chosen profile

5. Button to push settings to the server

6. Button to restart the perception application

7. Button to change the settings on the based on the profile chosen

8. Button to delete the chosen profile

9. Chose between a tree and from view mode. The tree mode gives more control over settings,
allowing you to add new ones and move them around to different sections. The form mode is
more restrictive but prevents you from adding new settings that will not work. Tree mode is
currently only available for LidarHub settings.

10. Indicator of the active profile on the server

11. JSON pane

39

6.7.1 JSON Pane

The JSON pane shows the the settings that have been fetched from the server. Settings can be
changed interactively clicking in invidual values and changing them. Types are restricted to match
the previous type. Changes will not affect the server until the Push Settings button is clicked.

To help find and edit settings the settings are shown in a nested view. Hide/Expand arrows can be
used for sections. Specific settings can be searched for in the top right of the pane.

For the perception, all settings are listed on the JSON pane. For LidarHub new settings and sections
can be added when operating in tree form.

** Should we discuss settings that the custom might typically want to change here? **

6.8 Lidar Hub
The Ouster Lidar Hub is designed to be an interface to the Ouster Perception software stack. It is
deployed as a separate Docker container in conjunction with the Ouster Perception solution and
extends many customer related features not inherent to the Ouster Perception software. These fea-
tures include:

On-device Aggregation of occupations and object lists

The gathering and reporting of Diagnostics and Alerts to the Ouster Connect

Down-sampling, Batching and Filtering of Perception JSON Streams used by:

TCP Relay Server(s)

MQTT Publishers

On-device Data Recording of JSON Streams and Point Cloud data

Please refer to Lidar Hub Overview for more information.

6.9 Preferences
The Ouster Detect web GUI provides a number of preferences for the user to customize their viewing
experience. These preferences are stored in the user’s browser. The preferences are accessible from
the main Viewer tab of the GUI. On the right side of the screen, below the main application tabs, there
are several sub-tabs. Clicking on the Preferences sub-tab will open the preferences panel.

Note: This setting is local to each client and will not be reflected on other browsers connected to the
backend.

Scene: This section allows the user to supply a name for the scene, such as Parking Lot 1. This
name will be displayed at the top of the GUI.

Theme: This section allows the user to select from several pre-defined colour schemes for the
GUI.

40

RangeRings: This section allows the user to configure the properties of range rings in the viewer.

Grid: This section allows the user to configure the properties of the square grid in the viewer.

Auto Rotate: Ouster Detect provides a mode to enable an automatic rotation of the scene in the
viewer. This section allows the user to configure the speed of rotation.

Developer Mode: Enabling this mode exposes advanced functionality for developers.

The preferences panel is shown in the following image.

Figure 6.29: Ouster Detect Preferences Panel

41

7 Lidar Hub Overview

The Ouster Lidar Hub is designed to be an interface to the Ouster Perception software stack. It is
deployed as a separate Docker container in conjunction with the Ouster Perception solution and
extends many customer related features not inherent to the Ouster Perception software. These fea-
tures include:

On-device Aggregation of occupations and object lists

The gathering and reporting of Diagnostics and Alerts to the Ouster Connect

Down-sampling, Batching and Filtering of Perception JSON Streams used by: - TCP Relay
Server(s) - MQTT Publishers

On-device Data Recording of JSON Streams and Point Cloud data

7.1 Architecture
TheOuster Lidar Hub is driven by the Ouster Perception software data streams, including object lists
and occupations via TCP sockets, configuration and diagnostics via RESTful API requests and point
cloud data via web sockets. These streams are distributed to sub-processes via an internal memory-
based pub/sub broker for optimal efficiency and minimal latency.

Figure 7.1: Lidar Hub Architecture

42

7.1.1 Application Configuration

The Ouster Lidar Hub is configured via the lidar_hub_config.json settings file found in /opt/ouster/-
conf/settings/. When started for the first time, the Lidar Hub will load its default settings.

The “application” section of the LidarHub settings file is used for defining top-level application-specific
settings.

Example

"application": {
"id": "FF:FF:FF:FF:FF:FF",
"name": "LidarHub",
"version": "0.18.0",
"logging": {
},
"ouster_connect": {
},
"world": {
}

}

7.1.2 Primary application Fields

Table7.1: Primary Application Fields

Field Format Description

id string Unique ID of this installation (typically the unique
hardware identifier generated by the Ouster Agent)

name string Application name (informational only)

version string Application version (should not be altered)

logging object Application Logging configuration (System Logging)

ouster_connect object Ouster Connect configuration (Ouster Connect)

world object World configuration (World)

7.1.3 Optional Application Fields

Table7.2: Optional Application Fields

Field Format Description

Debug bool Used for application diagnostics

log_health_level int Application health logging level (default 10 - DEBUG)

log_health_interval_secs int Application health logging interval (default 3600)

continues on next page

43

Table 7.2 – continued from previous page

Field Format Description

concurrency_port int System port number to use for ensuring a single in-
stance of the application (default = 4999)

internal_port_range list Internal queues bind port range…5 ports in total
must be defined (default = [4002, 4003, 4004, 4005,
4006])

web_server_port int Web server listening port number (default = 8003)

web_server_ssl bool Flag indicating if local web server should implement
SSL (default = false)

7.1.4 Perception Streams Configuration

The “perception” section of the LidarHub settings file is used for definingPerceptionSoftware-specific
settings. By default, the Lidar Hub will connect to the Perception software stack running in Docker
containers on the local host.

Example

"perception": {
"perception_websocket": {
"host": "perception",
"port": 3001

},
"event_zone_websocket": {
"host": "event-zones",
"port": 3004

},
"object_list": {

"host": "perception",
"port": 3002

},
"occupations": {

"host": "event-zones",
"port": 3003

},
"aggregation": {
}

}

44

7.1.5 Primary perception Fields

Table7.3: Primary perception Fields

Field Format Description

perception_websocket.host string Host name of the Perception Server web
socket server

perception_websocket.port int Port number of the Perception Server web
socket server

event_zone_websocket.host string Host name of the Event Zone Server web
socket server

event_zone_websocket.port int Port number of the Event Zone Server web
socket server

object_list.host string Host name of the JSON object_list TCP
server

object_list.port int Port number of the JSON object_list TCP
server

occupations.host string Host name of the JSON occupations TCP
server

occupations.port int Port number of the JSON occupations TCP
server

aggregation object Aggregation configuration

7.1.6 Optional perception Fields

Table7.4: Primary perception Fields

Field Format Description

perception_server_api string URL of the Perception Server RESTful API
endpoint (default = https://perception:
8000/perception/api/v1/)

event_zone_server_api string URL of the Event Zone Server RESTful
API endpoint (default = https://event-zones:
8001/event/api/v1/)

agent_api string URL of the Ouster Agent RESTful API
endpoint (default = http://172.17.0.1:
4443/agent/api/v1/)

perception_websocket.tls bool Flag indicating if the Perception Server web
socket server requires TLS (default = true)

continues on next page

45

https://perception:8000/perception/api/v1/
https://perception:8000/perception/api/v1/
https://event-zones:8001/event/api/v1/
https://event-zones:8001/event/api/v1/
http://172.17.0.1:4443/agent/api/v1/
http://172.17.0.1:4443/agent/api/v1/

Table 7.4 – continued from previous page

Field Format Description

perception_websocket.connect
_retry_interval_secs

float Delay in seconds before retrying a failed con-
nection to the Perception Server web socket
server (default = 60.0)

perception_websocket.receive_timeout
_secs

float Seconds to wait before resetting a connec-
tion due to no data being received from the
Perception Server web socket server (default
= 60.0)

event_zone_websocket.tls bool Flag indicating if the Event Zone Server web
socket server requires TLS (default = true)

event_zone_websocket.connect
_retry_interval_secs

float Delay in seconds before retrying a failed con-
nection to the Event Zone Server web socket
server (default = 60.0)

event_zone_websocket.receive_time
out_secs

float Seconds to wait before resetting a connec-
tion due to no data being received from the
Event Zone Server web socket server (default
= 60.0)

object_list.tls bool Flag indicating if the JSON object_list TCP
server requires TLS (default = true)

object_list.connect_retry_interval
_secs

float Delay in seconds before retrying a failed con-
nection to the JSON object_list TCP server
(default = 60.0)

object_list.receive_timeout_secs float Seconds to wait before resetting a connec-
tion due to no data being received from the
JSON object_list TCP server (default = 60.0)

occupations.tls bool Flag indicating if the JSON occupations TCP
server server requires TLS (default = true)

occupations.connect_retry_interval
_secs

float Delay in seconds before retrying a failed con-
nection to the JSON occupations TCP server
(default = 60.0)

occupations.receive_timeout _secs float Seconds to wait before resetting a connec-
tion due to no data being received from
the JSON occupations TCP server (default =
60.0)

46

7.2 System Logging
The Lidar Hub supports System logging to both the console and to file. When running in a Docker
container, console logging is captured byDocker. When installed on anOuster Catalyst device, console
logging is forwarded to the common Ouster log located at /opt/ouster/logs/ouster-docker.log.

7.2.1 Configuration

The application and application.logging sections of the Lidar Hub settings file are used for configuring
application logging. By default, file logging is disabled, and console logging is set to INFO.

Example

"application": {
...
"logging": {

"console_log_level": 20
}

}

7.2.2 Primary logging Fields

Table7.5: Optional logging Fields

Field Format Description

console_log_level int Application logging level (CRITICAL = 50, ERROR=40,
WARNING = 30, INFO = 20, DEBUG = 10)

7.2.3 Optional logging Fields

Table7.6: Optional logging Fields

Field Format Description

file_log_level int Optional application file logging level (CRITICAL = 50,
ERROR = 40, WARNING = 30, INFO = 20, DEBUG = 10)

file_log_path string Optional application file logging path (default = /op-
t/ouster/logs/)

47

7.3 Ouster Connect
Ouster’s cloud-based device management, monitoring and analytics platform is where the end user
can gain visibility into the health and performance of their Lidar deployment(s).

7.3.1 Configuration

The application.ouster_connect section of the Lidar Hub settings file is used for configuring Ouster
Connect. By default, System Diagnostics are published to Ouster Connect every 60 seconds. When
Aggregation is enabled, real-time and timeseries data will also be published to Ouster Connect when
generated by default.

Example

"application": {
...
"ouster_connect": {

"host": "connect.ouster.com",
"state": "provisioned",
"diagnostics_interval_secs": 60.0

}
}

7.3.2 Primary ouster_connect Fields

Table7.7: Primary ouster_connect Fields

Field Format Description

host string Host name/IP of Ouster Connect

state string Provisioning state of Ouster Connect

diagnostics_interval_secs float System Diagnostics interval…set to 0 to disable

7.3.3 Optional ouster_connect Fields

Table7.8: Optional ouster_connect Fields

Field Format Description

port int Ouster Connect MQTT port number (default =
1883)

tls bool Flag indicating if the Ouster Connect requires TLS
(default = false)

qos int Ouster Connect MQTT QOS (0 = At most once, 1 =
At least once, 2 = Exactly once) (default = 1)

continues on next page

48

Table 7.8 – continued from previous page

Field Format Description

provisioning_device_key string Provisioning device key for “Ouster Edge Device”
profile

provisioning_device_secret string Provisioning device secret for “Ouster Edge De-
vice” profile

provisioning_lidar_key string Provisioning device key for “Ouster Lidar Sensor
Device” profile

provisioning_lidar_secret string Provisioning device secret for “Ouster Lidar Sen-
sor” profile

topic_attributes string Ouster Connect MQTT topic for publishing at-
tributes

topic_telemetry string Ouster Connect MQTT topic for publishing teleme-
try

topic_alerts string Ouster Connect MQTT topic for publishing alerts

topic_provisioning_request string Ouster Connect MQTT topic for publishing provi-
sioning requests

topic_provisioning_response string Ouster Connect MQTT topic for subscribing to pro-
visioning responses

connecting_timeout_secs float Seconds to wait for a connection to be established
to the Ouster Connect (default = 5.0)

connect_retry_interval_secs float Delay in seconds before retrying a failed connec-
tion to the Ouster Connect (default = 60.0)

aggrega-
tion_realtime_transmit_hertz

float Frequency at which Aggregation real-time updates
will be published to Ouster Connect (default = 0.0)

aggrega-
tion_timeseries_transmit_hertz

float Frequency at which Aggregation timeseries data
will be published to Ouster Connect (default = 0.0)

7.4 World
The Lidar Hub has the ability to optionally convert JSON Data Stream x/y cartesian coordinates to
WGS84 longitude/latitude coordinates given a scene’s world reference geo-coordinate and azimuth.
By default, this option is disabled.

49

7.4.1 Configuration

The world section of the Lidar Hub settings file is used for configuring the scene’s world reference
geo-coordinate and azimuth.

Example

"application": {
...
"world": {
"latitude": 37.76466741329934,
"longitude": -122.4136976526134,
"azimuth": 57.6

}
}

7.4.2 Primary World Fields

Table7.9: Primary aggregation Fields

Field Format Description

latitude float Scene’s world reference latitude

longitude float Scene’s world reference longitude

Azimuth float Scene’s world reference azimuth

7.4.3 Optional World Fields

None

7.5 System Diagnostics
The LidarHubhas aSystemsDiagnosticsmodule that collects and aggregates statistics, health, alerts,
and telemetry from the compute device, all active Lidar sensors and all software related to the Per-
ception Solution…including the Lidar Hub itself. The Diagnostics data is broken into three buckets:

Attributes: Static data that is only reported when changed.

Telemetry: Dynamic data that is reported every diagnostics_interval_secs

Alerts: Lidar and software alerts reported with every detection and update

50

7.5.1 Output: Attributes

Compute device, lidar sensor and software Attributes will be published when any value changes to
the internal memory-based broker for consumption by MQTT Publishers, TCP Relay Servers and Data
Recorders.

Example

{
"hardware_id": "*1234567890",
"latitude": 40.7127837,
"longitude": -74.0059413,
"compute": {

"mac_address": "FF:FF:FF:FF:FF:FF",
"os_version": "",
"last_upgrade": "",
"last_upgrade_timestamp": 0,
"total_cpu_cores": 16,
"total_memory": 33354051584,
"total_disk_space": 982141468672

},
"lidars": [

{
"model": "OS1",
"serial_number": "992144000616",
"hostname": "os-992144000616.local.",
"beam_configuration": "128",
"firmware": {

"version": "v2.3.1"
}

}
],
"perception_server": {

"software_version": "0.1.0.284",
"settings_version": "1.2.0",
"is_running": true,
"is_paused": false,
"license": "none",
"num_inclusion_zones": 0,
"num_exclusion_zones": 1,
"configuration": {
},
"timestamp": 1660673730063520

},
"event_zone_server": {

"software_version": "0.1.0.284",
"settings_version": "0.0.0",
"is_running": true,
"license": "none",
"num_event_zones": 3,
"configuration": {
},
"timestamp": 1660673730110978

},
"lidar_hub": {

(continues on next page)

51

(continued from previous page)

"software_version": "0.18.4",
"settings_version": "0.18.0",
"license": "none",
"is_running": true,
"diagnostics_enabled": true,
"aggregation_enabled": false,
"mqtt_publishers": 0,
"tcp_relay_servers": 2,
"datarecorders": [],
"configuration": {
}

},
"timestamp": 1660698930000000,
"diagnostics_version": 1

}

52

JSON Field Definitions

Table7.10: JSON Field Definitions

Field Format Description

hardware_id string Hardware ID of the compute de-
vice (MAC Address or Agent
Locking Code)

latitude float Approximate latitude of the com-
pute device as reported by http:
//ipwho.is/

longitude float Approximate longitude of the
compute device as reported by
http://ipwho.is/

compute object Compute Device details

compute.mac_address string MACAddress of the compute de-
vice

compute.os_version string Operating system of the com-
pute device

compute.last_upgrade string Description of last OS upgrade
performed on the compute de-
vice

compute.last_upgrade_timestamp int Timestamp of last OS upgrade
performed on the compute de-
vice (microseconds since Jan. 1,
1970)

compute.total_cpu_cores int Number of CPU cores on the
compute device

compute.total_memory int Total memory installed in com-
pute device (bytes)

compute.total_disk_space int Total storage installed in com-
pute device (bytes)

lidars array Array of active Lidar sensors

lidars[].model string Lidar sensor model

lidars[].serial_number string Lidar senor serial number

lidars[].hostname string Lidar senor host name

lidars[].beam_configuration string Lidar senor beam configuration
as reported by the firmware

lidars[].firmware object Lidar Firmware details

continues on next page

53

http://ipwho.is/
http://ipwho.is/
http://ipwho.is/

Table 7.10 – continued from previous page

Field Format Description

lidars[].firmware.version string Lidar sensor firmware version as
reported by the firmware

perception_server object Perception Server details

perception_server.software_version string Perception Server software ver-
sion

perception_server.settings_version string Perception Server settings ver-
sion

perception_server.is_running bool Indication if the Perception
Server is running

perception_server.is_paused bool Indication if the Perception
Server is paused on a replay

perception_server.license string Perception Server license details

perception_server.num_inclusion_zones int Number of Perception Server in-
clusion zones

perception_server.num_exclusion_zones int Number of Perception Server ex-
clusion zones

perception_server.configuration object Perception Server configuration

perception_server.timestamp int Timestamp of these attributes
(microseconds since Jan. 1,
1970)

event_zone_server object Event Zone Server details

event_zone_server.software_version string Event Zone Server software ver-
sion

event_zone_server.settings_version string Event Zone Server settings ver-
sion

event_zone_server.is_running bool Indication if the Event Zone
Server is running

event_zone_server.license string Event Zone Server license details

event_zone_server.num_event_zones int Number of Event Zone Server
event zones

event_zone_server.configuration object Event Zone Server configuration

event_zone_server.timestamp int Timestamp of these attributes
(microseconds since Jan. 1,
1970)

lidar_hub object Lidar Hub details

lidar_hub.software_version string Lidar Hub software version

continues on next page

54

Table 7.10 – continued from previous page

Field Format Description

lidar_hub.settings_version string Lidar Hub settings version

lidar_hub.license string Lidar Hub license details

lidar_hub.is_running bool Indication if the Lidar Hub is run-
ning

lidar_hub.diagnostics_enabled bool Indication if Diagnostics are en-
abled

lidar_hub.aggregation_enabled bool Indication if Aggregation is en-
abled

lidar_hub.mqtt_publishers int Number of configured MQTT
publishers

lidar_hub.tcp_relay_servers int Number of configured TCP Relay
Servers

lidar_hub.datarecorders list List of configured Data
Recorders

lidar_hub.configuration object Lidar Hub configuration

timestamp int Timestamp of this message (mi-
croseconds since Jan. 1, 1970)

diagnostics_version int Version of this message

7.5.2 Output: Telemetry

Compute device, lidar sensor and software Telemetry will be published at diagnostics_interval_secs
to the internal memory-based broker for consumption by MQTT Publishers, TCP Relay Servers and
Data Recorders.

Example

{
"hardware_id": "*1234567890",
"compute": {

"cpu_utilization": 19.7,
"cpu_core_utilization": [
17.2,
19,
21.3,
18.3,
22.1,
18.9,
18.2,
19.7,
18.6,
17.5,
16.9,

(continues on next page)

55

(continued from previous page)

23,
25.2,
16.7,
20.1,
21.7

],
"available_memory": 18890395648,
"available_disk_space": 762672287744

},
"lidars": [

{
"model": "OS1",
"serial_number": "992144000616",
"firmware": {

"input_current_ma": 704,
"input_voltage_mv": 24044,
"internal_temperature_deg_c": 0,
"phase_lock_status": "DISABLED",
"timestamp_ns": 1727503038782740

},
"num_background_points": 83010,
"num_foreground_points": 416,
"num_failed_points": 865,
"num_no_return_points": 46781,
"num_zone_filtered_points": 4,
"num_ground_points": 0,
"num_clusters": 6,
"num_filtered_clusters": 0

}
],
"perception_server": {

"up_time": 0,
"num_objects": 0,
"num_websocket_clients": 3,
"num_tcp_clients": 3,
"timestamp": 1660673730063520

},
"event_zone_server": {

"up_time": 0,
"num_occupations": 0,
"num_websocket_clients": 2,
"num_tcp_clients": 2,
"timestamp": 1660673730110978

},
"lidar_hub": {

"mqtt_publishers_connected": 0,
"tcp_relay_server_connections": 0

},
"timestamp": 1660698930000000,
"diagnostics_version": 1

}

56

JSON Field Definitions

Table7.11: JSON Field Definitions

Field Format Description

hardware_id string MAC Address of the compute
device (MAC Address or Agent
Locking Code)

compute object Compute Device details

compute.cpu_utilization float Total CPU utilization across all
cores

compute.cpu_core_utilization list CPU utilization by cores

compute.available_memory int Available memory on the com-
pute device (bytes)

compute.available_disk_space int Available storage on the com-
pute device (bytes)

lidars array Array of active Lidar sensors

lidars[].model string Lidar sensor model

lidars[].serial_number string Lidar senor serial number

lidars[].firmware object Lidar Firmware details

lidars[].firmware.input_current_ma int Lidar sensor input current as
reported by the firmware (mil-
liamps)

lidars[].firmware.input_voltage_mv int Lidar sensor input voltage as re-
ported by the firmware (milli-
volts)

lidars[].firmware.internal_temperature_deg_c int Lidar sensor internal tempera-
ture as reported by the firmware
(degrees celsius)

lidars[].firmware.phase_lock_status string Lidar sensor phase lock status as
reported by the firmware

lidars[].firmware.timestamp_ns int Timestamp of these values
as reported by the firmware
(nanoseconds since Jan. 1,
1970)

lidars[].num_background_points int Number of background points
for the last frame

lidars[].num_foreground_points int Number of foreground points for
the last frame

continues on next page

57

Table 7.11 – continued from previous page

Field Format Description

lidars[].num_failed_points int Number of failed points for the
last frame

lidars[].num_no_return_points int Number of points not returned
for the last frame

lidars[].num_zone_filtered_points int Number of points filted by inclu-
sion and exclusion zones for the
last frame

lidars[].num_ground_points int Number of points filtered as
ground points for the last frame

lidars[].num_clusters int Number of clusters detected for
the last frame

lidars[].num_filtered_clusters int Number of clusters remaining af-
ter filtering and merging for the
last frame

perception_server object Perception Server details

perception_server.up_time int Perception Server run time since
last started

perception_server.num_objects int Number of objects currently be-
ing tracked by the Perception
Server

perception_server.num_websocket_clients int Number of web socket clients
connected to the Perception
Server

perception_server.num_tcp_clients int Number of TCP clients con-
nected to the Perception Server

perception_server.timestamp int Timestamp of these values (mi-
croseconds since Jan. 1, 1970)

event_zone_server object Event Zone Server details

event_zone_server.up_time int Perception Server run time since
last started

event_zone_server.num_occupations int Number of objects currently
being positioned inside event
zone(s)

event_zone_server.num_websocket_clients int Number of web socket clients
connected to the Event Zone
Server

event_zone_server.num_tcp_clients int Number of TCP clients con-
nected to the Event Zone Server

continues on next page

58

Table 7.11 – continued from previous page

Field Format Description

event_zone_server.timestamp int Timestamp of these values (mi-
croseconds since Jan. 1, 1970)

lidar_hub object Lidar Hub details

lidar_hub.mqtt_publishers_connected int Number of configured MQTT
publishers connected to their
endpoint

lidar_hub.tcp_relay_server_connections int Number of TCP clients con-
nected to Lidar Hub TCP Relay
Servers

timestamp int Timestamp of this message (mi-
croseconds since Jan. 1, 1970)

diagnostics_version int Version of this message

7.5.3 Output: Alerts

Lidar sensor and softwareAlertswill be publishedwhen first detected andwhen any update is reported
to the internal memory-based broker for consumption by MQTT Publishers, TCP Relay Servers and
Data Recorders.

Example

{
"alerts": [

{
"active": true,
"category": "SHOT_LIMITING",
"cursor": 2833,
"alert_code": "0x0100000f",
"level": "WARNING",
"source_info": "OS1-992144000616",
"id": 13962805723535194000,
"msg": "Shot limiting mode is active. Laser power is partially attenuated;

please see user guide for heat sinking requirements.",
"msg_verbose": "Shot limiting has started.",
"first_occurred": 0,
"last_occurred": 0,
"active_count": 0

},
{
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 2822,
"alert_code": "0x01000016",
"level": "WARNING",
"source_info": "OS1-992144000616",
"id": 11061546793406626000,

(continues on next page)

59

(continued from previous page)

"msg": "Could not send lidar data UDP packet to host; check that network is up.",
"msg_verbose": "Failed to send lidar UDP data to destination host 10.0.0.39:34642",
"first_occurred": 0,
"last_occurred": 0,
"active_count": 0

}
]

}

JSON Field Definitions

Table7.12: JSON Field Definitions

Field For-
mat

Description

alerts array Array of active alerts

alerts[].active bool Indication if the alert is still active

alerts[].category string Alert category (application specific)

alerts[].cursor int Alert cursor (lidar only)

alerts[].alert_code string Alert code (application specific - hex)

alerts[].level string Alert level (application specific)

alerts[].source_info string Alert source information (application spe-
cific)

alerts[].id int Unique alert ID (application specific)

alerts[].msg int Alert message

alerts[].msg_verbose int Additional alert details (if any)

alerts[].first_occurred int First occurrence of the alert code (micro/-
nano seconds since Jan. 1, 1970)

alerts[].last_occurred int Last occurrence of the alert code (micro/-
nano seconds since Jan. 1, 1970)

alerts[].active_count int Total occurrences of the alert code

7.6 Aggregation
The Lidar Hub has an on-device Aggregation module that aggregates zone occupations by timeseries
by object classification. A system-defined classification of “ALL” will also be aggregated for each zone
representing an aggregate of all objects. The Aggregation module also aggregates all tracked objects
by timeseries by object classification into a system-defined site-wide zone with the id of 0.

In addition to timeseries data, the Aggregation module will generate real-time events whenever the
occupancy of a zone changes at the transmit_realtime_hertz interval specified.

60

7.6.1 Configuration

The perception.aggregation section of the Lidar Hub settings file is used for configuring the Aggrega-
tionmodule. By default, Aggregation is enabled with 60-second timeseries intervals, and will generate
real-time events at 1Hz. Setting a value to zero will disable the feature.

Example

"perception": {
...
"aggregation": {

"timeseries_secs": 60.0,
"realtime_hertz": 1.0,
"storage_path": "/opt/ouster/conf/data/storage"

}
}

7.6.2 Primary aggregation Fields

Table7.13: Primary aggregation Fields

Field Format Description

timeseries_secs float Aggregation interval in seconds…a timeseries record
is emitted every interval (default = 60.0)

realtime_hertz float Frequency at which Aggregation will emit real-time
updates (default = 1.0)

storage_path str Path for the non-volatile storage of aggregation met-
rics…clear to disable (default = /opt/ouster/conf/-
data/storage)

7.6.3 Optional aggregation Fields

Table7.14: Optional aggregation Fields

Field Format Description

source_hertz float Frequency at which Aggregation will process Percep-
tion data (default = 2.0)

departure_debounce_ms int Timeout before departing track from a given zone in
milliseconds (default = 2500)

excluded_classifications list List of classifications to be excluded from Aggrega-
tion (default = [“PROSPECT”, “UNKNOWN”])

61

7.6.4 Output: Real-Time Events

Zone real-time occupancy events will be generated in real-time and published at trans-
mit_realtime_hertz to the internal memory-based broker for consumption by MQTT Publishers, TCP
Relay Servers and Data Recorders.

Example

{
"aggregation_realtime": [

{
"id": 1659467677889,
"name": "Office",
"timestamp": 1660664443771926,
"classification_metrics": [

{
"description": "ALL",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

},
{

"description": "PERSON",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

}
]

},
{
"id": 1658947733821,
"name": "Desk",
"timestamp": 1660664443771926,
"classification_metrics": [

{
"description": "ALL",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

},
{

"description": "PERSON",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

}
]

}
]

}

62

JSON Field Definitions

Table7.15: JSON Field Definitions

Field Format Description

id int Zone ID

name string Zone name

timestamp int Timestamp of the real-time event (microseconds
since Jan. 1, 1970)

classification_metrics array Array of object classifications occupying the zone

classifica-
tion_metrics.description

string Object classification name (“ALL” is an aggregate of
all classifications)

classifica-
tion_metrics.active_occupants

int Number of objects currently occupying the zone

classifica-
tion_metrics.total_visits

int Total visits to the zone since the application last
started

classifica-
tion_metrics.last_update

int Last zone update (microseconds since Jan. 1, 1970)

7.6.5 Output: Timeseries Aggregates

Zone timeseries aggregates will be generated every timeseries_secs and published at trans-
mit_timeseries_hertz to the internal memory-based broker for consumption byMQTT Publishers, TCP
Relay Servers and Data Recorders.

Example

{
"aggregation_timeseries": [

{
"id": 1659467677889,
"name": "Office",
"timestamp": 1660664440000000,
"classification_metrics": [

{
"description": "ALL",
"active_occupants": 1,
"max_active_occupants": 1,
"avg_active_occupants": 1,
"total_visitors": 5,
"total_visits": 5,
"new_visitors": 1,
"new_visits": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.122,
"overall_max_speed": 0.22669327197460112,

(continues on next page)

63

(continued from previous page)

"overall_avg_speed": 0.122,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

},
{

"description": "PERSON",
"active_occupants": 1,
"max_active_occupants": 1,
"avg_active_occupants": 1,
"total_visitors": 5,
"total_visits": 5,
"new_visitors": 1,
"new_visits": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.122,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.122,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

}
]

},
{
"id": 1658947733821,
"name": "Desk",
"timestamp": 1660664440000000,
"classification_metrics": [

{
"description": "ALL",
"active_occupants": 1,
"max_active_occupants": 1,
"avg_active_occupants": 1,
"total_visitors": 5,
"total_visits": 5,
"new_visitors": 1,
"new_visits": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.122,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.122,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

},
{

"description": "PERSON",
"active_occupants": 1,
"max_active_occupants": 1,
"avg_active_occupants": 1,
"total_visitors": 5,

(continues on next page)

64

(continued from previous page)

"total_visits": 5,
"new_visitors": 1,
"new_visits": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.122,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.122,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

}
]

},
{
"id": 0,
"name": "Edge-FF:FF:FF:FF:FF:FF",
"timestamp": 1660664440000000,
"classification_metrics": [

{
"description": "ALL",
"active_occupants": 1,
"max_active_occupants": 1,
"avg_active_occupants": 1,
"total_visitors": 5,
"total_visits": 5,
"new_visitors": 1,
"new_visits": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.124,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.124,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

},
{

"description": "PERSON",
"active_occupants": 1,
"max_active_occupants": 1,
"avg_active_occupants": 1,
"total_visitors": 1,
"total_visits": 1,
"new_visitors": 1,
"new_visits": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.124,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.124,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

(continues on next page)

65

(continued from previous page)

}
]

}
]

}

JSON Field Definitions

Table7.16: JSON Field Definitions

Field Format Description

id int Zone ID

name string Zone name

timestamp int Timestamp of the timeseries aggregate (microsec-
onds since Jan. 1, 1970)

classification_metrics array Array of object classifications occupying the zone

classifica-
tion_metrics.description

string Object classification name (“ALL” is an aggregate of
all classifications)

classifica-
tion_metrics.active_occupants

int Number of objects occupying the zone at thismoment

classifica-
tion_metrics.max_active_occupants

int Maximum number of objects occupying the zone in
this timeseries

classifica-
tion_metrics.avg_active_occupants

int Average number of objects occupying the zone in this
timeseries

classifica-
tion_metrics.total_visitors

int Total unique visitors to the zone

classifica-
tion_metrics.total_visits

int Total visits to the zone

classifica-
tion_metrics.new_visitors

int New unique visitors to the zone in this timeseries

classifica-
tion_metrics.new_visits

int New visits to the zone in this timeseries

classifica-
tion_metrics.departed_visitors

int Visitors that left the zone in this timeseries

classifica-
tion_metrics.current_max_speed

float Maximum speed observed in the zone in this time-
series

classifica-
tion_metrics.current_avg_speed

float Average speed observed in the zone in this timeseries

classifica-
tion_metrics.overall_max_speed

float Maximum speed observed in the zone since the appli-
cation last started

continues on next page

66

Table 7.16 – continued from previous page

Field Format Description

classifica-
tion_metrics.overall_avg_speed

float Average speed observed in the zone since the appli-
cation last started

classifica-
tion_metrics.current_avg_dwell

float Average dwell observed in the zone in this timeseries

classifica-
tion_metrics.overall_avg_dwell

float Average dwell observed in the zone since the applica-
tion last started

classifica-
tion_metrics.last_update

int Last zone update (microseconds since Jan. 1, 1970)

7.7 JSON Data Streams w/Down-sampling, Batching & Field Mapping
One or more MQTT Publishers and/or TCP Relay Servers may be configured for supported JSON data
streams (object_list | occupations | aggregation_realtime | aggregation_timeseries | diagnostics).
MQTT Publishers and TCP Relay Servers enable the down-sampling and batching of JSON output, as
well as custom field mapping, filtering and decimal precision of floating-point values. When running
in a Docker container, all TCP Relay Server port(s) must be exposed in the compose.yml.

Since batching is inherent to this feature, transmissions are wrapped in a JSON array with the data
stream name as the field name. This wrapping is enabled by default, but can be overridden by setting
return_as_array = false to the specific MQTT Publisher/TCP Relay Server configuration. Please note
that a malformed JSON message will be received if return_as_array is disabled and batching returns
more than one frame.

Example Batching

{"object_list": [{...}, {...}, {...}]}

object_list, occupations and diagnostics JSON fields can be filtered and (optionally) renamed by set-
ting field_mappings to a dictionary of key/value pairs, where the key is the actual field name and the
value is the new name (leaving blank will result in no renaming). Once field_mappings are applied,
all desired fields must be included in the field_mappings dictionary. If the field is an object, list or
dictionary, the entire object, list or dictionary will be returned…unless one of its fields are added to the
field_mappings.

Example Field_mapping

{"timestamp": "ts", "objects": "objs", "classification": "typ", "position": "pos",
"velocity": "velo", "dimensions": "dim", "x": "x", "y": "y","length": "l", "width": "w", "height": "h"}

Once field_mappings are in use, decimal precision for floating-point values can be defined by setting
decimal_precision. decimal_precision will only apply to fields defined in field_mappings and does
NOT automatically propagate to nested fields in objects, lists or dictionaries. A value of -1 disables
decimal_precision.

67

7.8 MQTT Publisher Configuration
The mqtt_publishers section of the Lidar Hub settings file is used for configuring one or more MQTT
Publisher(s). By default, no active MQTT Publishers are pre-configured, but an invalid example is in-
cluded for reference.

Multiple publishing threads can be configured for a given MQTT Publisher. If a publisher falls behind,
additional publishing threads will be launched until max_publishers is reached. A high_water_mark
controls how far behind publishing can fall before messages are dropped. Once publishing is caught
back up, the additional publishing threads will gradually be terminated in attempts to minimize re-
sources while maintaining pace with the velocity of data.

${device_name} is a special variable that can be used in-line when defining the user_name and/or
topic of an MQTT Publisher. The variable is replaced with its equivalent value at runtime.

Example

"mqtt_publishers": [
{

"source": "object_list",
"host": "mqttbroker.mycompany.com",
"port": 1883,
"user_name": "",
"password": "",
"topic": "/v1/${device_name}/object_list",
"qos": 1,
"data_hertz": 1,
"transmit_hertz": 1

},
{
...

}
]

7.8.1 Primary mqtt_publishers Fields

Table7.17: Primary mqtt_publishers Fields

Field Format Description

mqtt_publishers array Array of MQTT Publishers

mqtt_publishers[].source string JSON data stream source (ob-
ject_list/occupations/aggregation_realtime /aggre-
gation_timeseries/diagnostics)

mqtt_publishers[].host string MQTT Broker host name/IP address

mqtt_publishers[].port int MQTT Broker port number (default = 1883)

mqtt_publishers[].user_name string MQTT Broker username to authenticate with [MQTT-
3.1.3-11] (default = “”)

continues on next page

68

Table 7.17 – continued from previous page

Field Format Description

mqtt_publishers[].password string MQTT Broker password to authenticate with. Optional,
set to “” if not required. (default = “”)

mqtt_publishers[].topic string MQTT Broker topic to publish to

mqtt_publishers[].qos int Quality of Service (0 = At most once, 1 = At least once
(default), 2 = Exactly once)

mqtt_publishers[].data_hertz float Down-sampling Hz (a value of 0 disables down-
sampling)

mqtt_publishers[].transmit
_hertz

float Transmission Hz (a value of 0 sends immediately while
a value greater than data_hertz invokes batching)

7.8.2 Optional mqtt_publishers Fields

Table7.18: Optional mqtt_publishers Fields

Field Format Description

mqtt_publishers[].connecting_timeout_secs float Seconds to wait for a connection
to be established to the MQTT
Broker (default = 5.0)

mqtt_publishers[].connect_retry_interval_secs float Delay in seconds before retrying
a failed connection to the MQTT
Broker (default = 60.0)

mqtt_publishers[].tls bool Indicator if MQTT Broker requires
TLS (default = false (CURRENTLY
NOT TESTED))

mqtt_publishers[].return_as_array bool Controls the wrapping of trans-
missions into a well-formed
JSON array (default = true)

mqtt_publishers[].field_mappings dict JSON field filtering and renaming
(default = {})

mqtt_publishers[].decimal_precision int Decimal precision for floating-
point values (default = -1 (dis-
abled))

mqtt_publishers[].convert_to_geo_coordinates bool Converts cartesian coordinates
to WGS84 longitude/latitude co-
ordinates

mqtt_publishers[].min_publishers int Minimum number of publishing
threads (default = 1)

continues on next page

69

Table 7.18 – continued from previous page

Field Format Description

mqtt_publishers[].max_publishers int Maximum number of publishing
threads (default = 3)

mqtt_publishers[].max_retries int Maximum retry attempts to pub-
lish a givenmessage (default = 2)

mqtt_publishers[].high_water_mark int Maximum number of messages
pending to be published (default
= 100)

mqtt_publishers[].reenqueue_failures bool Add messages back to
data_queue if max_retries is ex-
ceeded. If the high_water_mark
is exceeded, the message will be
dropped. (default = true)

mqtt_publishers[].heartbeat_interval_secs float Interval to send heart-
beat_message when source
stream is inactive (default = 0
(disabled))

mqtt_publishers[].heartbeat_message string Message to transmit when
source stream is inactive (de-
fault = “{}”)

7.9 TCP Relay Server Configuration
The tcp_servers section of the Lidar Hub settings file is used for configuring one or more TCP Relay
Server(s). By default, TCP Relay Servers are pre-configured for object_list and occupations JSONdata
streams at 1Hz.

Example

"tcp_servers": [
{
"source": "object_list",
"port": 3302,
"data_hertz": 1,
"transmit_hertz": 1

},
{
"source": "occupations",
"port": 3303,
"data_hertz": 1,
"transmit_hertz": 1

},
{
...

}
]

70

7.9.1 Primary tcp_servers Fields

Table7.19: Primary tcp_servers Fields

Field Format Description

tcp_servers array Array of TCP Relay Servers

tcp_servers[].source string JSON data stream source ob-
ject_list/occupations/aggregation_realtime
/aggregation_timeseries/diagnostics

tcp_servers[].port int TCP Relay Server listening port

tcp_servers[].data_hertz float Down-sampling Hz (a value of 0 disables
down-sampling)

tcp_servers[].transmit_hertz float Transmission Hz (a value of 0 sends imme-
diately while a value greater than data_hertz
invokes batching)

7.9.2 Optional tcp_servers Fields

Table7.20: Optional tcp_servers Fields

Field Format Description

tcp_servers[].tls bool Enable TLS (default = true)

tcp_servers[].return_as_array bool Controls the wrapping of transmissions
into a well-formed JSON array (default =
true)

tcp_servers[].field_mappings dict JSON field filtering and renaming (de-
fault = {})

tcp_servers[].decimal_precision int Decimal precision for floating-point val-
ues (default = -1 (disabled))

tcp_servers[].convert_to_geo_coordinates bool Converts cartesian coordinates to
WGS84 longitude/latitude coordinates

tcp_servers[].heartbeat_interval_secs float Interval to send heartbeat_message
when source stream is inactive (default
= 0 (disabled))

tcp_servers[].heartbeat_message string Message to transmit when source
stream is inactive (default = “{}”)

71

7.10 Event Data Recorder
The Lidar Hub has an on-device Event Data Recorder with a rolling buffer of perception output for
recording activity before an event occurs. Completed recordings are uploaded to Ouster Connect (if
configured) for playback. Themodule also supports a retention period, compression and purge strate-
gies for handling recordings when the device is offline/not configured to upload to Ouster Connect.
By default, recordings are saved to /opt/ouster/conf/data/events/ before they are uploaded to Ouster
Connect.

7.10.1 Configuration

The event_recorder section of the Lidar Hub settings file is used for configuring the Event Data
Recorder module. By default, Data Recording is disabled for all features.

When both json_data.object_list_enabled and binary_data.trackedobjects_enabled are set, bi-
nary_data.trackedobjects_enabled will take precedence.

When both json_data.occupations_enabled and binary_data.zone_events_enabled are set, bi-
nary_data.zone_events_enabled will take precedence.

When used in combination with the Ouster Connect Player, the Event Recorder configuration must be
set at least as follows:

binary_data.pointclouds_enabled: true

binary_data.clusters_enabled: true

binary_data.trackedobjects_enabled: true

binary_data.images_enabled: true

binary_data.zone_events_enabled: true

retention_count: >= 1

use_compression: true [either true(default) or false]

Example

"event_recorder": {
"json_data": {
"object_list_enabled": false,
"occupations_enabled": false,
"aggregation_timeseries_enabled": false,
"aggregation_realtime_enabled": false,
"diagnostics_enabled": false

},
"binary_data": {
"pointclouds_enabled": true,
"clusters_enabled": true,
"trackedobjects_enabled": true,
"images_enabled": true,
"zone_events_enabled": true

(continues on next page)

72

(continued from previous page)

},
"max_rolling_buffer_secs": 60,
"retention_count": 5,
"min_available_disk": 0.35,
"purge_strategy": "oldest",
"use_compression": false,
"log_path": "/opt/ouster/conf/data/events"

}

7.10.2 Primary data_recorder Fields

Table7.21: Primary data_recorder Fields

Field Format Description

json_data.object_list_enabled bool Flag indicating if JSON object lists should be
captured in recordings (default = False)

json_data.occupations_enabled bool Flag indicating if JSON occupations should be
captured in recordings (default = False)

json_data.aggregation_enabled bool Flag indicating if JSON aggregation timeseries
output should be captured in recordings (default
= False)

json_data.diagnostics_enabled bool Flag indicating if JSON diagnostics (attributes
and telemetry combined) and alerts output
should be captured in recordings (default =
False)

binary_data.pointclouds_enabled bool Flag indicating if FlatBuf point clouds should be
recaptured in recordings (default = False)

binary_data.clusters_enabled bool Flag indicating if FlatBuf clusters should be cap-
tured in recordings (default = False)

binary_data.trackedobjects_enabled bool Flag indicating if FlatBuf tracked objects should
be captured in recordings (default = False)

binary_data.images_enabled bool Flag indicating if NearIR/CalRef images should
be captured in recordings (default = False)

binary_data.zone_events_enabled bool Flag indicating if JSON zone events should be
captured in recordings (default = False)

max_rolling_buffer_secs float Length of perception output rolling buffer in sec-
onds (default = 60.0)

retention_count int Number of recordings to retain (default = unlim-
ited)

continues on next page

73

Table 7.21 – continued from previous page

Field Format Description

min_available_disk float Minimal percentage of available storage be-
fore implementing the purge_strategy (default
= 0.25 (25%))

purge_strategy string Recording purge strategy to invoke when
minimum available storage is reached old-
est/newest/disable (default = oldest)

use_compression bool Flag indicating if completed recordings should
be compressed w/GZip (default = false)

log_path string Recordings path (default = /opt/ouster/conf/-
data/recordings/)

7.10.3 Optional data_recorder Fields

none

7.10.4 Accessing Event Data

Event recordings can be accessed/downloaded by the user at the following URL:

https://<<host>>/data/events/

7.11 JSON Data Recorder
The Lidar Hub has an on-device JSON Data Recorder module with timed-rotation, retention period,
compression and purge strategies. Object Lists, Occupations, Aggregation and Diagnostics are all
recorded into a combined log file. By default, recordings are saved to /opt/ouster/conf/data/record-
ings/.

7.11.1 Configuration

The json_data_recorder section of the Lidar Hub settings file is used for configuring the JSON Data
Recorder module. By default, Data Recording is disabled for all features. Data Recording can also be
disabled by setting rotation_minutes = 0.

Example

"json_data_recorder": {
"object_list_enabled": false,
"occupations_enabled": false,
"aggregation_enabled": false,
"diagnostics_enabled": false,
"rotation_minutes": 5,

(continues on next page)

74

(continued from previous page)

"retention_count": 288,
"min_available_disk": 0.35,
"purge_strategy": "oldest",
"use_compression": true,
"log_path": "/opt/ouster/conf/data/recordings"

}

7.11.2 Primary data_recorder Fields

Table7.22: Primary data_recorder Fields

Field Format Description

object_list_enabled bool Flag indicating if JSON object lists should be
recorded to disk (default = False)

occupations_enabled bool Flag indicating if JSON occupations should be
recorded to disk (default = False)

aggregation_enabled bool Flag indicating if JSON aggregation timeseries
output should be recorded to disk (default =
False)

diagnostics_enabled bool Flag indicating if JSON diagnostics (attributes
and telemetry combined) and alerts output
should be recorded to disk (default = False)

rotation_minutes float Data recording file rotation interval in fractional
minutes…set to 0 to disable data recording (de-
fault = 5.0)

retention_count int Number of recordings to retain (default = 288 (1
day))

min_available_disk float Minimal percentage of available storage be-
fore implementing the purge_strategy (default
= 0.35 (35%))

purge_strategy string Recording purge strategy to invoke when
minimum available storage is reached old-
est/newest/disable (default = oldest)

use_compression bool Flag indicating if recordings should be com-
pressed w/GZip after rotation (default = true)

log_path string Recordings path (default = /opt/ouster/conf/-
data/recordings/)

75

7.11.3 Optional data_recorder Fields

None

7.11.4 Accessing JSON Data

JSON data recordings can be accessed/downloaded by the user at the following URL:

https://<<host>>/data/recordings/

7.12 Binary Data Recorder
The Lidar Hub has an on-device Binary Data Recorder module with timed-rotation, retention period,
compression and purge strategies. Point Clouds, Clusters and Tracked Objects are recorded as flatbuf
messages, while Event Zone Server Zone Events are stored as JSON messages. All messages are
merged into a combined file in binary format, each prepended with a 4-byte unsigned length (big-
endian). By default, recordings are saved to /opt/ouster/conf/data/recordings/.

7.12.1 Configuration

The binary_data_recorder section of the Lidar Hub settings file is used for configuring the Binary Data
Recorder module. By default, Data Recording is disabled for all features. Data Recording can also be
disabled by setting rotation_minutes = 0.

Example

"data_recorder": {
"pointclouds_enabled": false,
"clusters_enabled": false,
"trackedobjects_enabled": false,
"images_enabled": false,
"zone_events_enabled": false,
"rotation_minutes": 5,
"retention_count": 288,
"min_available_disk": 0.35,
"purge_strategy": "oldest",
"use_compression": true,
"log_path": "/opt/ouster/conf/data/recordings"

}

76

7.12.2 Primary data_recorder Fields

Table7.23: Primary data_recorder Fields

Field Format Description

pointclouds_enabled bool Flag indicating if FlatBuf point clouds should be
recorded to disk (default = False)

clusters_enabled bool Flag indicating if FlatBuf clusters should be
recorded to disk (default = False)

trackedobjects_enabled bool Flag indicating if FlatBuf tracked objects should
be recorded to disk (default = False)

images_enabled bool Flag indicating if NearIR/CalRef images should
be captured in recordings (default = False)

zone_events_enabled bool Flag indicating if JSON zone events should be
recorded to disk (default = False)

rotation_minutes float Data recording file rotation interval in fractional
minutes…set to 0 to disable data recording (de-
fault = 5.0)

retention_count int Number of recordings to retain (default = 288 (1
day))

min_available_disk float Minimal percentage of available storage be-
fore implementing the purge_strategy (default
= 0.35 (35%))

purge_strategy string Recording purge strategy to invoke when
minimum available storage is reached old-
est/newest/disable (default = oldest)

use_compression bool Flag indicating if recordings should be com-
pressed w/GZip after rotation (default = true)

log_path string Recordings path (default = /opt/ouster/conf/-
data/recordings/)

7.12.3 Optional data_recorder Fields

None

77

7.12.4 Accessing Binary Data

Binary data recordings can be accessed/downloaded by the user at the following URL:

https://<<host>>/data/recordings/

78

8 Connecting to Output

This section describes how to integrate with Ouster Detect to get object list, occupation data as well
as any diagnostic information to monitor the health of the system.

The entrypoint for data generated from Ouster Detect is the Lidar Hub Overview. The Lidar Hub runs
in it’s own container and subscribes to the object list and occupation data generated by the percep-
tion and event zone containers. The role of Lidar Hub is to configure the output to accommodate the
consumer. Through the Lidar Hub the user can select a subset of the available data, change the fre-
quency at which they receive data, alter the field names in themessages, and/or the configure number
of messages they receive at a time.

This section introduces some terms needed to understand the contents of each message.

The term lidar frame refers to the point cloud data for one revolution for a single lidar sensor.

The term frame will refer to the output from multiple unique lidar frames (i.e., one lidar frame
from Lidar A, one lidar frame from Lidar B). The perception system calculates the object list and
occupations on a single frame.

An object is a moving entity in the scene which Ouster Detect is tracking over time. An object
consists of a position, orientation, velocity, dimensions, and classification but also contains his-
toric data such as how long we’ve been tracking it or what the initial position was when we saw it.
An object is associated over time by it’s object id or UUID. More details about what’s contained
in an object is listed in Object Information.

An event zone refers to a user-defined area where object information is desired.

An occupation is an object within an event zone at a specific instant in time.

Telemetry is defined as time-based snapshots of the internal state of perception.

Alerts represent error conditions where Ouster Detect is operating outside the desired state.

Attributes refers to static information about the edge processor.

In this section, we go over how object lists, occupations, aggregation data, and diagnostic information
is serialized into messages. We’ll refer to these messages as sources. In Publishing Configuration, we
go over how to configure publishing messages from these sources through a TCP stream and to an
MQTT broker.

79

8.1 Object List Data
The object list data contains information about all the moving objects in the scene for a single frame.
The object list is serialized in JSON format. The table below shows all the root-level information in the
object list message for a single frame.

Table Object list information below describes the root-level information for an object list

Table 8.1: Object list definition

Field Type Description Example

frame_count integer Number of frames since the sys-
tem started outputting object
lists. This value should be se-
quential

1

timestamp integer Timestamp of when the last point
cloud arrived which contributed
to the object list. Units in mi-
croseconds since Jan. 1, 1970.

1667785112323234

object_list JSON array Object list array. See TableObject
information below

–

The object_list field contains an array of all moving objects in the scene. Table Object information
below shows all the fields available for the objects.

80

Table 8.2: Object Information

Field Type Description Example

id integer Unique number identifying ob-
ject in current running instance
of perception. If perception
restarts, this count will reset.

100

uuid string Unique universal identifier (UUID)
for objects over all running in-
stances. If perception restarts,
objects in the new running in-
stance will have unique UUID’s
relative to all other running in-
stances.

“74b4e42e-1989-40d0-
91d6-ae498b173001”

classification string Classification of the object. For
Ouster Detect 1.0, this set can
be “PERSON”, “TWO_WHEELER”,
“VEHICLE”, “LARGE_VEHICLE”.

“PERSON”

classifica-
tion_confidence

float Number between 0 and 1 repre-
senting the system’s confidence
in the assigned classification. 0
represents no confidence. 1 rep-
resents fully confident.

0.95

creation_ts integer Timestamp when the object was
first visible in the system’s field
of view. This point in time will
be before the object was tracked
and classified. This number and
frame_count both represent the
duration the object has been in
the sytem’s field of view. Units in
microseconds since Jan. 1, 1970.

1663175901389312

update_ts integer Timestamp the object was last
updated. For objects the sys-
tem has measured in the current
frame, this timestamp will be the
same as the timestamp at the
root level. For objects the system
has not measured in the current
frame, this timestamp will stay at
the timestamp when the object
was last measured and lag be-
hind the timestamp at the root
level. An objectwill be considered
measured when the lidars have
captured a minimum number of
points on the target. Units in mi-
croseconds since Jan. 1, 1970.

1663175920076580

81

Table 8.3: Object Information Cntd.

82

Field Type Description Example

Dimensions JSON container Length, width, height of the
bounding box enclosing all
points on the object. Length
is the extents along the x-axis,
width the extents along the
y-axis, height along the z-axis.
Axis referenced are the axis
of the object with x pointing
in the direction of motion,
y pointing perpendicular to
the left, and z pointing up
(right-hand rule).

{“length”:
0.4404,
“width”:
0.24217,
“height”:
0.6693}

frame_count integer Number of frames an object
has been visible for. This num-
ber and the creation_ts num-
ber both represent the dura-
tion the object has been in the
sytem’s field of view.

188

heading float Positive rotation about the z-
axis (right-hand rule). Mea-
sured off of the positive x-axis.

17.7924

initial_position JSON container Initial XYZ location of the ob-
ject in the first frame it was
visible in the field of viewof the
lidars. This position is in the
world reference frame.

{“x”: 0.8668,
“y”: -1.3293, “z”:
1.1521}

num_points integer Number of points belonging to
the object

101

position JSON container Current XYZ location of the
object in the world reference
frame.

{“x”: 0.8668,
“y”: -1.3293, “z”:
1.1521}

posi-
tion_uncertainty

JSON container Estimated variance of the po-
sition measurement. Units in
meters^2

{“x”: 0.03, “y”:
0.19, “z”: 0.38}

orientation JSON container Quaternion representing the
orientation of the object with
respect to the world reference
frame.

{“w”: 1.0000,
“x”: 0.0000,
“y”: 0.0000, “z”:
0.0000}

velocity JSON container Current rate of change in the
XYZ position of the object. Ve-
locity is in the world reference
frame. Units are in m/s.

{“x”: 3.8668,
“y”: -10.3293,
“z”: 0.1521}

veloc-
ity_uncertainty

JSON container Estimated variance of the ve-
locity measurement. Units in
(m/s)^2.

{“x”: 0.4323,
“y”: 1.9123, “z”:
0.1921}

83

The sample below shows example object list data in JSON format

"object_list": [
{

"frame_count": 226599,
"objects": [
{

"classification": "PERSON",
"classification_confidence": 0,
"creation_ts": 1663175901389312,
"dimensions": {

"height": 0.6693140268325806,
"length": 0.44045835733413696,
"width": 0.24217760562896729

},
"frame_count": 188,
"heading": 17.792495727539062,
"id": 1094,
"initial_position": {

"x": 0.866864025592804,
"y": -1.3293535709381104,
"z": 1.1521248817443848

},
"num_points": 1052,
"orientation": {

"qw": 0.9879699945449829,
"qx": 0,
"qy": 0,
"qz": 0.15464559197425842

},
"position": {

"x": 0.9670451879501343,
"y": -1.5673401355743408,
"z": 1.0692270994186401

},
"position_uncertainty": {

"x": 0.00872983346207417,
"y": 0.00872983346207417,
"z": 0.03328978381826185

},
"update_ts": 1663175920076580,
"uuid": "74b4e42e-1989-40d0-91d6-ae498b173001",
"velocity": {

"x": -0.03508763682949244,
"y": 0.01674633024355329,
"z": 0.029468615562023993

},
"velocity_uncertainty": {

"x": 0.7745966692414834,
"y": 0.7745966692414834,
"z": 0.8143665760550121

}
}

],
"timestamp": 1663175920089867

(continues on next page)

84

(continued from previous page)

}
]

8.2 Occupation Data
The occupation data contains information about all objectswhich intersect any event zones for a single
frame. The event zones are serialized in JSON format. Table Occupation information below shows all
root-level information in the occupation message.

Table 8.4: Occupation Information

Field Type Description Example

timestamp integer Timestamp of the when last point
cloud arrived which contributed
to the object list. Units in mi-
croseconds since Jan. 1, 1970.

1667785112323234

occupations JSON array Array of occupations for the cur-
rent frame. See Table Zone occu-
pation information.

{[{“id”: …, “name”: …,
“objects”: …}]}

The occupations field contains an array of all zones which are being occupied at the current times-
tamp. Table Zone occupation information below shows the information available for each zone:

Table 8.5: Zone occupation information

Field Type Description Example

id integer Zone unique identifier 10

name string Zone human-readable name “South entrance”

num_objects integer Number of objects occupying the
zone for the current frame

101

objects JSON array Array of objects occupying the
zone for the current frame. See
Table Object information.

–

The sample below shows example occupation data in JSON format

"occupations": [
{

"id": 1658947733821,
"name": "Desk",
"num_objects": 1,
"objects": [
{

"classification": "PERSON",
(continues on next page)

85

(continued from previous page)

"classification_confidence": 0,
"creation_ts": 1663175901389312,
"dimensions": {

"height": 1.0555479526519775,
"length": 0.713068962097168,
"width": 0.6797903776168823

},
"frame_count": 6169,
"heading": 239.63951110839844,
"id": 1094,
"initial_position": {

"x": 0.866864025592804,
"y": -1.3293535709381104,
"z": 1.1521248817443848

},
"num_points": 2353,
"orientation": {

"qw": -0.4972730875015259,
"qx": 0,
"qy": 0,
"qz": 0.8675940632820129

},
"position": {

"x": 1.423563003540039,
"y": -1.1258434057235718,
"z": 1.4065864086151123

},
"position_uncertainty": {

"x": 0.0087298334620742,
"y": 0.0087298334620742,
"z": 0.03328978381826278

},
"update_ts": 1663176519190541,
"uuid": "74b4e42e-1989-40d0-91d6-ae498b173001",
"velocity": {

"x": -0.07373628162375315,
"y": 0.17994346251739213,
"z": 0.05531235350852935

},
"velocity_uncertainty": {

"x": 0.7745966692415875,
"y": 0.7745966692415875,
"z": 0.8143665760552492

}
}

]
}

],
"timestamp": 1663176519190541

86

8.3 Aggregation
Ouster Detect allows users to configure output to be grouped by zone and by time-interval in a pro-
cess called aggregation. This allows a user to only receive condensed occupation data separated by
classification. For example, imagine you’re interested in knowing the number of pedestrians in the
crosswalk at an intersection at 30 second intervals. The user could draw a zone around the intersec-
tion and setup aggregation for the desired zone and only receive this data from Ouster Detect. The
user could then parse the received data and only iterate over the metrics reported for the objects
with classification “PERSON”. Along with the user-defined zones, a system-defined zone exists which
includes all classifications. This zone is named “ALL” and has zone id 0. Aggregation sends data
calculated in two ways: by time-series and in real-time.

Time-series aggregation will report maximum, cumlative and average statitics about each classifica-
tion that occupied the zone during the last interval. The table below shows the root-level information
reported with each time-series aggregation message.

Table 8.6: Time-series aggregation output

Field Type Description

id integer Zone identifier as configured in UI

name string Human readable zone name

timestamp integer Timestamp at the end? of the timeseries in-
terval. Units in microseconds since Jan. 1,
1970

classification_metrics JSON array Array of JSON objects where each object
contains the classification metrics for a cer-
tain class (See Time-series classification
metrics below)

The table below shows the time-series classification metrics for each class

Table 8.7: Time-series aggregation output for classification metrics

87

Field Type Description

description string Object classification name (“ALL” is an aggre-
gate of all classifications)

active_occupants integer Number of objects occupying the zone in this
time interval

avg_active_occupants float Average number of objects occupying the zone

total_visits integer Total visits to the zone

new_visitors integer New unique visitors to the zone in this interval

new_visits integer Unique visitors that left the zone in this interval

current_max_speed float Maximum speed observed in the zone in this
interval

current_avg_speed float Average speed observed in the zone in this in-
terval

overall_max_speed float Maximumspeed observed in the zone since the
application last started

overall_avg_speed float Average speed observed in the zone since the
application last started

current_avg_dwell float Average dwell observed in the zone in this in-
terval

overall_avg_dwell float Average dwell time observed in the zone since
the application last started

last_update integer Timestamp when the zone was last updated.
Units in microseconds since Jan. 1, 1970

The following code sample shows time-series aggregation data in JSON format

"aggregation_timeseries": [
{
"id": 1659467677889,
"name": "Office",
"timestamp": 1660664440000000,
"classification_metrics": [
{

"description": "ALL",
"active_occupants": 1,
"avg_active_occupants": 1,
"total_visits": 1,
"new_visitors": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.122,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.122,
"current_avg_dwell": 0,

(continues on next page)

88

(continued from previous page)

"overall_avg_dwell": 0,
"last_update": 1660664449970829

},
{

"description": "PERSON",
"active_occupants": 1,
"avg_active_occupants": 1,
"total_visits": 1,
"new_visitors": 1,
"departed_visitors": 0,
"current_max_speed": 0.227,
"current_avg_speed": 0.122,
"overall_max_speed": 0.22669327197460112,
"overall_avg_speed": 0.122,
"current_avg_dwell": 0,
"overall_avg_dwell": 0,
"last_update": 1660664449970829

}
]

}
]

Real-time aggregationwill report the instantaneous changes to any zones at a user-defined frequency.
By only reporting the changes, real-time aggregation helps reduce the bandwidth required to commu-
nicate relevant changes in the scene. The table below shows information that will be reported for any
zones whose occupations counts change since the last update. The table below shows the root-level
information reported for each real-time aggregation message

Table 8.8: Real-time aggregation output

Field Type Description

id integer Zone identifier

name string Human readable zone name

timestamp integer Timestamp when the classification metrics
were measured, in microseconds since Jan. 1,
1970.

classification_metrics JSON array Array of JSON objects where each object con-
tains the classification metrics for a certain
class (See Real-time classification metrics be-
low)

The table below shows the classification metrics reported for each class

Table 8.9: Real-time aggregation output for classification metrics

89

Field Type Description

description string Object classification name (“ALL” is an aggre-
gate of all classifications)

active_occupants integer Number of objects currently occupying the
zone

total_visits integer Total visits to the zone since the application
last started

last_update integer Timestamp when the zone was last updated.
Units in microseconds since Jan. 1, 1970

Time-series and real-time aggregation are configured by navigating to the “Settings” tab
in the UI. From the “Settings Type” drop-down, select “Lidar Hub”. Navigate to the “li-
darHub.perception.aggregation” subsection. The table Aggregation configuration below shows re-
quired an optional fields needed to configure aggregation

Table 8.10: Aggregation configuration

Field Description

timeseries_secs Duration of one interval, in seconds. Time-series aggregation
messages will be emitted every interval (default = 60.0)

realtime_hertz Frequency of updates for real-time aggregation (default = 1.0)

storage_path Path for the non-volatile storage of aggregation metrics. Leav-
ing this field blank will disable saving aggregation data to disk.
(default = /opt/ouster/conf/data/storage).

source_hertz Frequency perception data is processed. This value should
bemore frequent than the timeseries_secs and realtime_hertz
(default = 2.0).

departure_debounce_ms Duration an object needs to be outside of the zone boundaries
before aggregation considers the object to have left the zone,
in milliseconds (default = 2500). This is useful to remove noise
when objects are situated at the zone boundaries.

excluded_classifications List of classifications to be excluded from Aggregation (default
= [“PROSPECT”, “UNKNOWN”]).

Once aggregation is configured, a publisher can be configured to send the aggregation data. (See
Publishing Configuration)

The following code sample shows real-time aggregation data in JSON format

"aggregation_realtime": [
{

"id": 1659467677889,
"name": "Office",
"timestamp": 1660664443771926,

(continues on next page)

90

(continued from previous page)

"classification_metrics": [
{

"description": "ALL",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

},
{

"description": "PERSON",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

}
]

},
{

"id": 1658947733821,
"name": "Desk",
"timestamp": 1660664443771926,
"classification_metrics": [
{

"description": "ALL",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

},
{

"description": "PERSON",
"active_occupants": 1,
"total_visits": 1,
"last_update": 1660664443771926

}
]

}
]

8.4 Telemetry Data
The Telemetry data provides time-based information about the state of the Ouster Detect system.
Telemetry is forwarded from the following components:

perception container (divided into lidar-specific telemetry and general perception telemetry)

event zones container

lidar hub container

computation resources and other information regarding edge processor

The Perception Telemetry is divided into information related to each active lidar and data related to
the overall perception system. The information for specific lidars includes the same telemetry infor-
mation which can be retrieved from the lidar directly.

91

Table Lidar telemetry information below shows the information available from the perception teleme-
try for each lidar.

Table 8.11: Lidar telemetry information

Name Description

serial_number Identifier for the lidar

firmware Container of values from firmware telemetry. See firmware
manual for details

num_background_points Number of points the system detected from static objects from
the latest scan

num_no_return_points Number of firings without a range return from the latest scan

num_failed_points Number of no return points which the system has identified
as likely from an object within range (i.e., not shooting off into
space)

num_foreground_points Number of points the system detected from moving objects
from the latest scan

num_filtered_points Number of points the system has filtered as noise

num_zone_filtered_points Number of points the system has filtered from user-defined
point zones

num_ground_points Number of points identified as part of the ground from the lat-
est scan

num_clusters Number of moving objects in the latest scan

Table Perception telemetry information below shows information available from the perception
telemetry for the whole system.

Table 8.12: Perception telemetry information

Name Description

timestamp Timestamp of the system, in microseconds

num_objects Number of moving objects detected in the last frame

num_tcp_clients Number of clients connected to the TCP server

num_websocket_clients Number of clients connected to the websocket server

recording Container of values about the current recording session. If not
recording session is active, this value is null. See Recording
telemetry.

largest_arrival_delta Measures the difference between the earliest and latest frames
which contributed to the last object list. Units in microseconds

lidars Container of JSON objects where each object contains the in-
formation in Table Lidar telemetry information

92

Table Recording telemetry shows details about the recording value above when a recording session
is active.

Table 8.13: Recording telemetry

Name Description

timestamp Timestamp of the system, in microseconds

The table below shows the information available from the event zones container

Table 8.14: Event zones telemetry information

Name Description

up_time Time since the event zone server was started, in microsec-
onds?

num_occupations Number of objects currently being positioned inside event
zone(s)

num_websocket_clients Number of web socket clients connected to the Event Zone
Server

num_tcp_clients Number of TCP clients connected to the Event Zone Server

timestamp Timestamp of these values (microseconds since Jan. 1, 1970)

The table below shows information available from the lidar hub container

Table 8.15: Lidar hub telemetry information

Name Description

mqtt_publishers_connected Number of MQTT publishers configured

tcp_relay_server_connections Number of TCP clients connected to Lidar Hub TCP Relay
Servers

93

The table below shows the information available for computation resources

Table 8.16: Other telemetry information

Name Description

cpu_utilization Total CPU utilization across all cores

cpu_core_utilization CPU utilization by cores

available_memory Available memory on the compute device (bytes)

available_disk_space Available storage on the compute device (bytes)

cpu_temperature_deg_c Temperature measurement from the CPU of the edge proces-
sor, in degrees Celcius

cpu_core_temperature_deg_c JSON list of CPU core temperatures, in degrees Celcius

Table Other telemetry information shows other telemetry information

Table 8.17: Other telemetry information

Name Description

hardware_id Unique identifier for the edge processor

timetamp Timestamp of the edge processor, units in microseconds since
Jan. 1, 1970

diagnostics_version Single-digit version of the diagnostics information

Consumers can receive this data through web requests to /perception/api/v1/telemetry or by config-
uring a publisher with a “diagnostics” source (See Publishing Configuration)

The following code sample shows example telemetery data in JSON format

"hardware_id": "*1234567890",
"compute": {

"cpu_utilization": 19.7,
"cpu_core_utilization": [

17.2,
19,
21.3,
18.3

],
"available_memory": 18890395648,
"available_disk_space": 762672287744

},
"lidars": [

{
"model": "OS1",
"serial_number": "992144000616",
"firmware": {
"input_current_ma": 704,

(continues on next page)

94

(continued from previous page)

"input_voltage_mv": 24044,
"internal_temperature_deg_c": 0,
"phase_lock_status": "DISABLED",
"timestamp_ns": 1727503038782740

},
"num_background_points": 83010,
"num_foreground_points": 416,
"num_failed_points": 865,
"num_no_return_points": 46781,
"num_zone_filtered_points": 4,
"num_ground_points": 0,
"num_clusters": 6,
"num_filtered_clusters": 0

}
],
"perception_server": {

"up_time": 0,
"num_objects": 0,
"num_websocket_clients": 3,
"num_tcp_clients": 3,
"timestamp": 1660673730063520

},
"event_zone_server": {

"up_time": 0,
"num_occupations": 0,
"num_websocket_clients": 2,
"num_tcp_clients": 2,
"timestamp": 1660673730110978

},
"lidar_hub": {

"mqtt_publishers_connected": 0,
"tcp_relay_server_connections": 0

},
"timestamp": 1660698930000000,
"diagnostics_version": 1

95

8.5 Alert Data
Ouster Detect exposes alerts to the user to communicate when the system is in an error state or when
an aspect of the system should be investigated. The user can query the alerts through the RESTful
interface as well as view them through the web page. The underlying format of the alerts is in JSON
and is very similar to the format defined in the Ouster Firmware User Manual.

The table below lists the alerts in Ouster Detect along with their alert code, description, and guidance
on what could be happening to cause it.

Table 8.18: Alert list

Alert Code Name Severity Description/Possible
causes

Recommended action

0x2000001 Sensor
timeout

CRITICAL The system is not re-
ceiving data from a li-
dar that’s been config-
ured. Possible causes
are the UDP destina-
tion has been changed,
the network infrastruc-
ture has been severed,
or the lidar hardware
has failed.

Investigate the state of
the lidar by navigating
to the IP address di-
rectly (If the lidar is di-
rectly connected to the
catalyst, use the sensor
proxy feature in the UI).
Check the UDP destina-
tion address and con-
firm it’s pointing to the
Catalyst. The lidar’s se-
rial number will be in
this alert’s source infor-
mation.

0x2000002 Dropping li-
dar data

WARNING The system is not keep-
ing up with lidar data it’s
ingesting

Check to make sure
your compute device
is within the recom-
mended specifications
for the number of lidars
in your setup.

0x2000003 Dropping
cluster

WARNING The system is not able
to process clusters fast
enough

This is most likely an is-
sue with the number of
moving objects the sys-
tem is trying to track in
the scene. Check to see
if this number is corre-
lated with a high volume
of moving objects

96

https://ouster.com/downloads/

Table 8.19: Alert list Cntd.

Alert Code Name Severity Description/Possible
causes

Recommended action

0x2000004 Cluster
delta over
threshold

WARNING The timestamps of data
from all lidar sources
are over the config-
urable threshold. This
will likely cause issues
with tracking since the
system is attempting
to process data from
multiple lidars which
are unsynchronized.

Make sure all sensors
have a stable fast con-
nection to the Catalyst.
If this does not resolve
the issue, contact cus-
tomer support about
putting the connected
sensors in phase lock.

0x2000005 Websocket
client be-
hind

WARNING A client connected to
the websocket server is
not keeping up with the
data behind sent. The
system is dropping data
as a result

The source information
field of this alert will
contain the IP address
of the client which is not
keeping up. Check the
network bandwidth be-
tween the Catalyst and
this client

0x2000006 TCP client
behind

WARNING A client connected to
the TCP server is not
keeping up with the
data behind sent. The
system is dropping data
as a result

The source information
field of this alert will
contain the IP address
of the client which is not
keeping up. Check the
network bandwidth be-
tween the Catalyst and
this client

0x2000007 Invalid
packet
source

ERROR The system is receiv-
ing data from an an ex-
pected IP address on a
network port configured
to receive lidar data

The cause of this alert
is most likely a config-
uration issue with one
of the lidars. This oc-
curs when a lidar was
previously configured to
send it’s data to a Cata-
lyst unit but theCatalyst
unit is expecting data
from another lidar now
on that port. Navigate
to the IP addresses of
all lidars on the network
and confirm any unused
lidars are not sending
their data to the Cata-
lyst

97

Table 8.20: Alert list Cntd.

Alert Code Name Severity Description/Possible
causes

Recommended action

0x2000008 Lidar packet
mismatch

WARNING The system is receiving
data of unexpected size
on a port it’s expecting
lidar data on. This is
usually configuration is-
sue related to UDP pro-
files. There is likely a
difference between the
UDP profile Ouster De-
tect is expecting and the
UDP profile configured
on the lidar.

The cause of this alert
is most likely a config-
uration issue with one
of the lidars. Navigate
to the IP address of
the browser of the lidar
in source info and con-
firm the UDP profile is
the one Ouster Detect is
configured for (Default
is RNG15_RFL8_NIR8)

Ouster Detect also forwards alerts from the lidar. We distinguish between lidar alerts and Ouster
Detect’s alert with the 4th byte (0x01XXXXXX indicates a lidar alert, 0x02XXXXXX indicates a Ouster
Detect alert). See the Ouster Firmware User Manual for a description of the lidar alerts.

Ouster Detect alerts go from RESET to ACTIVE when the condition for the alert is satisfied. Once the
condition becomes false, the alert state goes from ACTIVE to LOGGED. Users can query the ACTIVE,
LOGGED, or all alerts with the endpoints defined in insert reference to diagnostic section.

The table below describes the information returned when querying alerts from Ouster Detect.

98

https://ouster.com/downloads/

Table 8.21: Alert fields

Field Type Description

active boolean Whether the condition enabling this alert is
current true

active_count integer How many times this alert has been true
since it first occurred

alert_code string Hexidecimal identifier for the alert type.
See table above

category string Module where the alert exists

first_occurred integer Timestamp when alert first occurred, in mi-
croseconds since Jan. 1, 1970

last_occurred integer Timestamp when alert last occurred, in mi-
croseconds since Jan. 1, 1970

source_info string String identifier for alert instance. For ex-
ample, in a multi-lidar setup we can have
alerts for different instances processing
two different lidars. This field distinguishes
between those instances such that we can
have more than one active alert with the
same alert_code. In the case where we
want to distinguish between lidars, this field
would be the serial number of the lidar

id integer Unique identifier for all alerts generated
from the system over all time. Two alerts
occurring at different times with the same
alert code will have different id’s.

level string Severity of the alert. Can beWARNING, ER-
ROR, or CRITICAL

msg string Short description

msg_verbose string Long description

Consumers can receive this data through web requests to /perception/api/v1/alerts or by configuring
a publisher with a “diagnostics” source (See Publishing Configuration).

99

The following code sample shows alert data in JSON format

"alerts": [
{

"active": true,
"category": "SHOT_LIMITING",
"cursor": 2833,
"alert_code": "0x0100000f",
"level": "WARNING",
"source_info": "OS1-992144000616",
"id": 13962805723535194000,
"msg": "Shot limiting mode is active. Laser power is partially attenuated; please see user guide for�

↪→heat sinking requirements.",
"msg_verbose": "Shot limiting has started.",
"first_occurred": 0,
"last_occurred": 0,
"active_count": 0

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 2822,
"alert_code": "0x01000016",
"level": "WARNING",
"source_info": "OS1-992144000616",
"id": 11061546793406626000,
"msg": "Could not send lidar data UDP packet to host; check that network is up.",
"msg_verbose": "Failed to send lidar UDP data to destination host 10.0.0.39:34642",
"first_occurred": 0,
"last_occurred": 0,
"active_count": 0

}
]

8.6 Publishing Configuration
This section goes over how to configure Ouster Detect publishers. Ouster Detect allows the user to
configure the rate at which messages are sent, the number of messages to put in a packet, and the
field names for each piece of information. It supports sending information through a TCP stream as
well as through MQTT.

8.7 Downsampling and Batching
Ouster Detect calculates the object list and occupations at the same rate which it’s receiving data
from the lidars. Sometimes this frequency and volume of data can be too much for the consumer. To
remedy this, Ouster Detect allows the user to configure a reduction in the data sent through downsam-
pling, batching, andmapping. Downsampling reduces the frequency of the object list and occupation
messages being sent from Ouster Detect, giving the user snapshots of the state of each object with-
out having to consume it at the rate it’s being calculated. Batching collects messages desired by the
consumer and sends them in bursts at a desired frequency.

For example, say a consumer wants to receive the data at 1 Hz intervals but only wants to receive a

100

message every 10 seconds with all this information (i.e., receive 10 object lists every second repre-
senting the 10 second interval). The user can configure downsampling to 1 Hz and batching to 0.1 Hz.
The values can be configured for the protocols below with the data_hertz configuring the downsam-
pling and the transmit_hertz configuring the batching. Setting either of these values to 0 disables the
functionality.

8.8 Mapping
The mapping functionality allows the user to change the the fields being published, enabling trans-
lation to another protocol using JSON. This is convenient if the consumer wants to send the Ouster
Detect data directly to another service using different field names. Mapping also has the ability to re-
move fields, reducing the bandwidth required by not sending extra information. Mapping is achieved
by setting the field_mapping value when configuring a publisher. If the field mapping value is empty,
the full message will be sent with the fields defined by Ouster Detect.

Once a value is specified in field_mapping, only the specified values will be sent. Omitting a field will
stop it from being sent.

8.8.1 Publishing Protocols

Ouster Detect supports sending messages containing object lists, occupations, aggregation (time-
series and/or real-time), and diagnostics (telemetry and alert information). These messages are re-
ferred to as sources. Publshers can be configured to send messages from sources through a TCP
stream or through MQTT. As described in Section Publishing Configuration, Ouster Detect can be
configured to downsample, batch and map the data as desired.

8.9 TCP stream
To send distinct messages over TCP, we need a way to signal the beginning and end of a message.
Ouster Detect does this by first sending a 32-bit unsigned integer with big-endian byte-ordering
representing the total length of the message (including the 32-bit length). The consumer can parse
this length and discern howmuchmore there is to read for the current message (i.e., length - 4 bytes).
The consumer can then read the remaind bytes in themessage and interpret them as JSON. See Code
Samples for a code sample reading a TCP stream in python.

Apicture herewould be useful showing an example of the first 4 bytes and the remainder of the
message

A TCP stream requires a source (i.e., object_list, occupations, aggregation_realtime, aggrega-
tion_timeseries, diagnostics), a server port, a data frequency (for downsampling), and a transmit fre-
quency (for batching). The table below shows the required parameters for each TCP stream

101

Table 8.22: Required TCP Relay server configuration

Field Type Description

source string JSON data stream source (either
object_list, occupations, aggrega-
tion_realtime, aggregation_timeseries,
or diagnostics)

port TCP Relay Server lis-
tening port

Port for server to listen on

data_hertz Hertz Downsampling frequency to keep data.
Setting to 0 will disable downsampling and
send data as fast as it’s available.

transmit_hertz Hertz Frequency to send data at. If this value is
greater than data_hertz, batching will be
enabled keeping data at data_hertz and
sending it at this frequency.

Table 8.23: Optional TCP Relay server configuration

Field Type Description

tls bool Enable TLS (default = true)

return_as_array bool Controls thewrapping of transmissions into
a well-formed JSON array (default = true)

field_mappings JSON dict JSON field filtering and renaming (default =
{})

decimal_precision integer Decimal precision for floating-point values
(default = -1 (disabled))

heartbeat_interval_secs float Interval to send heartbeat_message when
source stream is inactive (default = 0 (dis-
abled))

heartbeat_message string Message to transmit when source stream is
inactive (default = “{}”)

To configure a TCP replay server, navigate to the “Settings” tab in the UI and in the “Settings Type”
drop-down, select “LidarHub”. Scroll down to the “tcp_servers” section and configure one of the server
entries as desired. By default, Ouster Detect has two TCP servers configured; one for the object list on
port 3302 and one for the occupations on port 3303. Both default configurations down sample data
to 1 Hz with no batching. Ouster Detect configures the incoming ports through a compose.yaml file
used by docker. Users with a catalyst units are restricted to use 3302 and 3303. Users with their own
hardware can change the compose.yaml file to expose more ports if desired.

102

8.10 MQTT
Ouster Detect supports publishing to MQTT brokers enabling IoT applications using this protocol. The
table below displays the information required to configure an MQTT publisher.

Table 8.24: Optional TCP Relay server configuration

Field Type Description

source string JSON data stream source (either
object_list, occupations, aggrega-
tion_realtime, aggregation_timeseries,
or diagnostics)

host string MQTT Broker host name/IP address

port integer MQTT Broker port number (default = 1883)

user_name string MQTT Broker username to authenticate
with [MQTT-3.1.3-11] (default = “”)

password string MQTT Broker password to authenticate
with. Optional, set to “” if not required. (de-
fault = “”)

topic string MQTT Broker topic to publish to

qos integer Quality of Service (0 = At most once, 1 = At
least once (default), 2 = Exactly once)

data_hertz integer Downsampling frequency to keep data.
Setting to 0 will disable downsampling and
send data as fast as it’s available.

transmit_hertz integer Frequency to send data at. If this value is
greater than data_hertz, batching will be
enabled keeping data at data_hertz and
sending it at this frequency.

To configure aMQTT publisher, navigate to the “Settings” tab in the UI and in the “Settings Type” drop-
down, select “LidarHub”. Scroll down. Scroll down to the “mqtt_publishers” section and configure one
of the publisher entries as desired. There are no MQTT publishers configured by default.

103

9 Networking Guide - Ouster sensors

Warning: Gemini software does not support link-local connections. Please use instructions in the
following guide to configure your sensor to a static IP or to use DHCP to configure the sensor IP. If
you need further assistance please contact Ouster support.

This guide will help you understand how to quickly get connected to your sensor to start doing great
things with it. When trying to connect to the sensor for the first time there are some basics that need
to be achieved for successful communication between the host machine and the sensor.

We need to ensure that the sensor receives an IP address from the host machine so that we can talk
to it. This can be achieved with a few different methods such as DHCP, link-local, static IP. We also
need to ensure that the sensor and the host machine are talking on the same subnet.

Once the sensor receives an IP address and is on the correct subnet we can talk to it using its host-
name, os-991234567890.local, where 991234567890 is the sensor serial number. The sensor serial number
can be found on a sticker affixed to the top of the sensor.

Based on the platform being used the user can refer to the following:

Windows

macOS

Linux

Note: For support on the edge processor refer to Connecting Sensors to the Edge Processor.

9.1 Networking Terminology
If some of this terminology is new to you don’t fret, we have defined some of it for you. Here is some
basic terminology that will help you digest the steps and be more familiar with networking in general.

IPv4 Address This is the address that can be used to communicate with devices on a network. The
format of an IPv4 address is a set of four octets, xxx.xxx.xxx.xxxwith xxx being in the range 0-255.
For example, your host machine Ethernet port may have an address of 192.0.2.1 and your sensor
may have an address of 192.0.2.130.

DHCP (Dynamic Host Configuration Protocol) Server This is a server that may run on your host
machine, switch, or router which will serve an IPv4 address to a device that is connected to it. It
will ensure that each device connected will have a unique IPv4 address on the network.

Link-local IPv4 Address These are the addresses that are self-assigned between the host machine
and a device connected to it in the absence of a DHCP server. They are only valid within the
network segment that the host is connected to. The addresses lie within the block 169.254.0.0/
16 (169.254.0.0 - 169.254.255.255).

104

https://ouster.atlassian.net/servicedesk/customer/portal/8

Subnet Mask This defines which bits of the IPv4 address are the network prefix and which are the
host identifiers. See the table below for an example.

Binary Form Decimal-dot notation

IP address 11000000.00000000.00000010.10000010 192.0.2.130

Subnet mask 11111111.11111111.11111111.00000000 255.255.255.0

Network prefix 11000000.00000000.00000010.00000000 192.0.2.0

Host identifier 00000000.00000000.00000000.10000010 0.0.0.130

Note: Subnet mask can be abbreviated with the number of bits that apply to the network prefix. E.g.
/24 for 255.255.255.0 or /16 for 255.255.0.0.

Static IPv4 Address This is when you specify the addresses for the host machine and/or connected
device rather than letting the host machine self-assign or using a DHCP server. For example, you
may want to specify the host machine IPv4 address to be 192.0.2.100/24 and the sensor to be
192.0.2.200.

Hostname This is the more human readable name that comes with your sensor. The sensor’s host-
name is os-991234567890.local, where 991234567890 is the sensor serial number.

Note: The .local portion of the hostname denotes the local domain used in combination with mul-
ticast DNS (mDNS). It is employed when using the sensor in a local network environment with sup-
porting operating system services. This means when the sensor is directly connected to the host
machine or if the host machine and sensor are on the same network connected through a router or
switch. If you are trying to connect to the sensor on another domain with a supporting DHCP and DNS
server configuration you should replace the .local with the domain the sensor is on. For example, if
the sensor is connected to a network with domain ouster-domain.com the sensor will be reachable on
os-991234567890.ouster-domain.com.

9.2 Windows
The following steps have been tested onWindows 10. The sensor’s hostname is os-991234567890.local,
where 991234567890 is the sensor serial number. The sensor serial number can be found on a sticker
affixed to the top of the sensor.

105

9.2.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

9.2.2 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps inDetermining the IPv4Address
of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

9.2.3 Determining the IPv4 Address of the Sensor

Warning: Gemini software does not support link-local connections. Please use instructions in the
following guide to configure your sensor to a static IP or to use DHCP to configure the sensor IP. If
you need further assistance please contact Ouster support.

1. Open a command prompt on the host machine by pressingWin+X and then A

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 [sensor_hostname]

Example

C:\\WINDOWS\\system32>ping -4 |os-sn|

Note: If this command hangs you may need to go back and configure your interface to link-local in
the section Connecting the Sensor

Response

Pinging |os-sn| [|sensor-ip|] with 32 bytes of data:
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64

(continues on next page)

106

https://ouster.atlassian.net/servicedesk/customer/portal/8

(continued from previous page)

Ping statistics for |sensor-ip|:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor
IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor with mDNS Service Discovery

Command

dns-sd -G v4 [sensor_hostname]

Example

C:\\WINDOW\\system32>dns-sd -G v4 |os-sn|

Response

Timestamp A/R Flags if Hostname Address TTL
14:22:46.897 Add 2 6 |os-sn| |sensor-ip| 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor
IPv4 address is of the form 169.254.x.x it is connected via link-local.

9.2.4 Determining the IPv4 Address of the Interface

1. Open a command prompt by pressingWin+X and then A

2. View the IPv4 address of your interfaces

Command

netsh interface ip show config

Example

C:\\WINDOWS\\system32>netsh interface ip show config

Response

Configuration for interface "Local Area Connection"
DHCP enabled: Yes

(continues on next page)

107

(continued from previous page)

IP Address: |interface-ip|
Subnet Prefix: 169.254.0.0/16 (mask 255.255.0.0)
InterfaceMetric: 25
DNS servers configured through DHCP: None
Register with which suffix: Primary only
WINS servers configured through DHCP: None

Configuration for interface "Loopback Pseudo-Interface 1"
DHCP enabled: No
IP Address: 127.0.0.1
Subnet Prefix: 127.0.0.0/8 (mask 255.0.0.0)
InterfaceMetric: 75
Statically Configured DNS Servers: None
Register with which suffix: Primary only
Statically Configured WINS Servers: None

In this example, your sensor is plugged into interface “Local Area Connection”

Your host IPv4 address will be on the line that starts with IP Address: In this case it is 169.254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local to the
sensor. This means that Windows self-assigned an IP address in the absence of a DHCP server.

9.2.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP.

Command

netsh interface ip set address ["Network Interface Name"] dhcp

Example

with interface name "Local Area Connection"

C:\\WINDOWS\\system32>netsh interface ip set address "Local Area Connection" dhcp

Response

blank

108

9.2.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static.

Command

netsh interface ip set address name="Network Interface Name" static [IP address] [Subnet Mask]
[Gateway]

Example

with interface name “Local Area Connection” and IPv4 address 192.0.2.1/24.

C:\\WINDOWS\\system32>netsh interface ip set address name="Local Area Connection"
static 192.0.2.1/24

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response

blank

9.2.7 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _roger._tcp. You can use service discovery tools such as Bonjour browser
(Windows) to find all sensors connected to the network.

Note: Click Bonjour to install Bonjour Browser.

Example using Bonjour Browser:

Step 1: User can download the Bonjour Browser

Figure 9.1: Downloading Application

109

https://hobbyistsoftware.com/bonjourbrowser/
https://hobbyistsoftware.com/bonjourbrowser/

Figure 9.2: Software Setup and Installation

Step 2: Sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _roger._tcp. Click on this to get all the information required.

9.3 macOS
The following steps have been tested on macOS 10.15.4. The sensor’s hostname is os-991234567890.
local, where 991234567890 is the sensor serial number. The sensor serial number can be found on a
sticker affixed to the top of the sensor.

9.3.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

9.3.2 The Sensor Homepage

1. Type os-991234567890.local in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps inDetermining the IPv4Address
of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

110

Figure 9.3: _roger._tcp

111

9.3.3 Determining the IPv4 Address of the Sensor

Warning: Gemini software does not support link-local connections. Please use instructions in the
following guide to configure your sensor to a static IP or to use DHCP to configure the sensor IP. If
you need further assistance please contact Ouster support.

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -c3 [sensor_hostname]

Example

Mac-Computer:~ username$ ping -c3 |os-sn|

Note: If this command hangs you may need to go back and configure your interface to link-local in
the section Connecting the Sensor

Response

PING |os-sn| (|sensor-ip|): 56 data bytes
64 bytes from |sensor-ip|: icmp_seq=0 ttl=64 time=0.644 ms
64 bytes from |sensor-ip|: icmp_seq=1 ttl=64 time=0.617 ms
64 bytes from |sensor-ip|: icmp_seq=2 ttl=64 time=0.299 ms

--- |os-sn| ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.299/0.520/0.644/0.157 ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor
IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 |os-sn|

Response

112

https://ouster.atlassian.net/servicedesk/customer/portal/8

DATE: ---Tue 28 Apr 2020---
11:40:43.228 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
11:40:43.414 Add 2 18 |os-sn|. |sensor-ip| 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor
IPv4 address is of the form 169.254.x.x it is connected via link-local.

9.3.4 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. en1 in the example below.

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. View the IPv4 address of your interfaces

Command

ifconfig

113

Example

Mac-Computer:~ username$ ifconfig

Response

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
nd6 options=201<PERFORMNUD,DAD>

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 38:f9:d3:d6:33:8a
inet6 fe80::1c30:1246:93a2:9f68%en0 prefixlen 64 secured scopeid 0x7
inet 192.0.2.7 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active

en1: flags=8963<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 48:65:ee:1d:22:35
inet6 fe80::c27:1917:47ed:bcfe%en1 prefixlen 64 secured scopeid 0x12
inet |interface-ip| netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

* In this example, your sensor is plugged into interface ``en1``
* Your host IPv4 address will be on the line that starts with ``inet``: In this case it is |interface-ip|

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local to the
sensor. This means that the macOS self-assigned an IP address in the absence of a DHCP server.

9.3.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP

Command

sudo ipconfig set [interface_name] DHCP

114

Example

with interface name en1

Mac-Computer:~ username$ sudo ipconfig set en1 DHCP

Response

blank

Note: However you can verify the change has been made with the ``ifconfig`` command.
The ``inet`` line will be blank if nothing is plugged in or shows the DHCP or
link-local self-assigned IPv4 address. E.g. |interface-ip|

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet |interface-ip| netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

9.3.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static

Command

sudo ipconfig set [interface_name] MANUAL [ip_address] [subnet_mask]

Example

with interface name en1 and IPv4 address 192.0.2.1 and subnet mask 255.255.255.0.

Mac-Computer:~ username$ sudo ipconfig set en1 MANUAL 192.0.2.1 255.255.255.0

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response

blank

Note: However you can verify the change has been made with the ``ifconfig`` command.
The ``inet`` line will show the static IPv4 address. e.g. ``192.0.2.1``.

(continues on next page)

115

(continued from previous page)

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet 192.0.2.1 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

9.3.7 Finding a Sensor

With mDNS Service Discovery:

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as dns-sd (Windows/ma-
cOS) to find all sensors connected to the network.

1. Find all sensors and their associated service text on a network.

Command

dns-sd -Z [service type]

Example

Mac-Computer:~ username$ dns-sd -Z _roger._tcp

Response

Browsing for _roger._tcp
DATE: ---Thu 30 Apr 2020---
17:27:52.242 ...STARTING...

; To direct clients to browse a different domain, substitute that domain in
place of '@'

lb._dns-sd._udp PTR @

; In the list of services below, the SRV records will typically reference dot-local
Multicast DNS names.

; When transferring this zone file data to your unicast DNS server, you'll need to
replace those dot-local

; names with the correct fully-qualified (unicast) domain name of the target host
offering the service.

_roger._tcp PTR
Ouster Sensor |sn|._roger._tcp
Ouster Sensor |sn|._roger._tcp SRV 0 0 7501 |os-sn|. ;
Replace with unicast FQDN of target host
Ouster Sensor |sn|._roger._tcp TXT "pn=840-102145-B" "sn= |sn|"
"fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= |sn|"

116

2. Browse for the sensor IPv4 address using dns-sd and the sensor hostname.

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 |os-sn|

Response

DATE: ---Thu 30 Apr 2020---
17:37:33.155 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
17:37:33.379 Add 2 7 |os-sn|. |sensor-ip| 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123

With Discovery App:

Step 1: User can download the Discovery DNS-SD

Figure 9.4: Downloading Application

117

https://apps.apple.com/us/app/discovery-dns-sd-browser/id1381004916?mt=12

Step 2: Using finder, the user can search for Discovery

Figure 9.5: Finding the Application

Step 3: Sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _roger._tcp. Click on this to get all the information required.

9.4 Linux
The following steps have been tested on Ubuntu 18.04 & 20.04.4 LTS. The sensor’s hostname is os-
991234567890.local, where 991234567890 is the sensor serial number. The sensor serial number can be
found on a sticker affixed to the top of the sensor.

9.4.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

3. If directly connecting to the host machine you may need to set your Ethernet interface to Link-
Local Only mode. This can be done via the command line or GUI. See instructions in Setting the
Interface to Link-Local Only

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

118

Figure 9.6: _roger._tcp

9.4.2 Setting the Interface to Link-Local Only

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method link-local ipv4.addresses ""

Note: To identify the name of your connection, please use the command: nmcli connection show.

Example

with interface name eth0 and IPv4 address "".

username@ubuntu:~$ nmcli con modify eth0 ipv4.method link-local ipv4.addresses ""

Response

blank

Note: However you can verify the change has been made with the ``ip addr`` command.
The ``inet`` line for the interface ``eth0`` will show the link-local IPv4 address automatically
negotiated once the sensor is reconnected to the interface. e.g. |interface-ip|.

(continues on next page)

119

(continued from previous page)

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet |interface-ip|/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

ViaGUI: The image below illustrates how to set the interface to Link-Local Onlymode using the graph-
ical user interface.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

120

9.4.3 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps inDetermining the IPv4Address
of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

9.4.4 Determining the IPv4 Address of the Sensor

Warning: Gemini software does not support link-local connections. Please use instructions in the
following guide to configure your sensor to a static IP or to use DHCP to configure the sensor IP. If
you need further assistance please contact Ouster support.

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 -c3 [sensor_hostname]

Example

username@ubuntu:~$ ping -4 -c3 |os-sn|

Note: If this command hangs you may need to go back and configure your interface to link-local in
the section Setting the Interface to Link-Local Only

Response

PING |os-sn| (|sensor-ip|) 56(84) bytes of data.
64 bytes from |os-sn| (|sensor-ip|): icmp_seq=1 ttl=64 time=1.56 ms
64 bytes from |os-sn| (|sensor-ip|): icmp_seq=2 ttl=64 time=0.893 ms
64 bytes from |os-sn| (|sensor-ip|): icmp_seq=3 ttl=64
time=0.568 ms

--- |os-sn| ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2025ms
rtt min/avg/max/mdev = 0.568/1.008/1.565/0.416 ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor
IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using avahi-browse and the sensor service type,
which is _roger._tcp. Learn more about this in Finding a Sensor with mDNS Service Discovery

121

https://ouster.atlassian.net/servicedesk/customer/portal/8

Command

avahi-browse -lrt [service type]

122

Example

username@ubuntu:~$ avahi-browse -lrt _roger._tcp

Response

+ eth0 IPv6 Ouster Sensor |sn| _roger._tcp local
+ eth0 IPv4 Ouster Sensor |sn| _roger._tcp local
= eth0 IPv6 Ouster Sensor |sn| _roger._tcp local

hostname = [|os-sn|]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor |sn| _roger._tcp local

hostname = [|os-sn|]
address = [|sensor-ip|]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= |sn|"

"pn=840-102145-B"]

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor
IPv4 address is of the form 169.254.x.x it is connected via link-local.

9.4.5 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. eth0 in the example below.

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. View the IPv4 address of your interfaces

Command

ip addr

Example

username@ubuntu:~$ ip addr

Response

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

(continues on next page)

123

(continued from previous page)

default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet |interface-ip|/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 192.0.2.232/24 brd 192.0.2.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever
4: gpd0: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN group

default qlen 500
link/none

In this example, your sensor is plugged into interface eth0.

Your host IPv4 address will be on the line that starts with inet: In this case it is 169.254.0.1.

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local to the
sensor. This means that the Linux self-assigned an IP address in the absence of a DHCP server.

9.4.6 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Note: It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method auto ipv4.addresses ""

Example

with interface name eth0

username@ubuntu:~$ nmcli con modify eth0 ipv4.method auto ipv4.addresses ""

Response

blank

(continues on next page)

124

(continued from previous page)

Note: However you can verify the change has been made with the ``ip addr`` command.
There will be no ``inet`` line for the interface ``eth0`` until you plug in a cable
to a device that has a DHCP server to provide an IPv4 address the interface

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute
valid_lft forever preferred_lft forever

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0
valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link
valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Automatic (DHCP) mode using the
graphical user interface.

125

9.4.7 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Note: It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method manual ipv4.addresses [ip_address]

Example

with interface name eth0 and IPv4 address 192.0.2.1/24.

username@ubuntu:~$ nmcli con modify eth0 ipv4.method manual ipv4.addresses 192.0.2.1/24

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response

blank

Note: However you can verify the change has been made with the ``ip addr`` command.
The ``inet`` line for the interface ``eth0`` will show the static IPv4 address. e.g. ``192.0.2.1``

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

126

Via GUI The image below illustrates how to set the interface to Manual (static)mode using the graph-
ical user interface.

9.4.8 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as avahi-browse (Linux) to
find all sensors connected to the network.

1. Find all sensors and their associated service text which includes the sensor IPv4 address using
avahi-browse and the sensor service type _roger._tcp.

Command

avahi-browse -lrt [service type]

Example

username@ubuntu:~$ avahi-browse -lrt _roger._tcp

Response

+ eth0 IPv6 Ouster Sensor |sn| _roger._tcp local
+ eth0 IPv4 Ouster Sensor |sn| _roger._tcp local
= eth0 IPv6 Ouster Sensor |sn| _roger._tcp local

hostname = [|os-sn|]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor |sn| _roger._tcp local

hostname = [|os-sn|]
(continues on next page)

127

(continued from previous page)

address = []
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= |sn|"

"pn=840-102145-B"]

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123.

10 Perception API

Perception HTTPS API specification.

10.1 default
GET /perception/api/v1/

Root api endpoint

Status Codes
200 OK – OK

GET /
Root endpoint

Status Codes
200 OK – OK

GET /perception/api/v1
Root endpoint

Status Codes
200 OK – OK

10.2 Sensor Management
GET /perception/api/v1/sensor

Get list of Sensors

Get full list of sensors connected to perception pipeline

Status Codes
200 OK – OK

128

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

DELETE /perception/api/v1/sensor
Clears all lidars

Removes all live and pcap sensors from perception pipelines and sources. Effectively puts sys-
tem back into original state with respect to added sensors. Note this does not affect extrinsics,
that should be cleared separately

Status Codes
200 OK – OK

GET /perception/api/v1/sensor/{status}
Get list of active/inactive Sensors

Get list of sensors with given status ({active, inactive}) connected to perception pipeline.

Parameters
status (string) –

Status Codes
200 OK – OK

PUT /perception/api/v1/sensor/{hostname}
Add a sensor

Add sensor to perception server

Parameters
hostname (string) –

Status Codes
200 OK – OK

DELETE /perception/api/v1/sensor/{sensor_id}
Remove Sensor

Remove sensor by serial number

Parameters
sensor_id (string) –

Status Codes
200 OK – OK

PUT /perception/api/v1/pcap
Add PCAP and sensor metadata for replay

Adds a PCAP and the associated lidar sensor metadata to the perception server for replay

Status Codes
200 OK – OK

129

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

10.3 Settings
GET /perception/api/v1/settings

Get all settings

Get all current settings

Status Codes
200 OK – OK

POST /perception/api/v1/settings
Set all settings.

Set entirely new settings file

Status Codes
200 OK – OK

PUT /perception/api/v1/set_profile/{profile}
Set the current profile

Set the current profile

Parameters
profile (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

GET /perception/api/v1/profile/{profile}
Get profile by name

Get profile by name

Parameters
profile (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

PUT /perception/api/v1/profile/{profile}
Add/Update settings profile

Add/Update settings profile

Parameters
profile (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

130

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

DELETE /perception/api/v1/profile/{profile}
Remove profile by name

Remove profile by name

Parameters
profile (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

GET /perception/api/v1/profiles
Get list of profiles

Get list of profiles

Status Codes
400 Bad Request – Bad Request
200 OK – OK

PUT /perception/api/v1/restore_profile/{profile}
Restore profile to default values

Restore profile to default values

Parameters
profile (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

10.4 Registration
GET /perception/api/v1/extrinsics

Access all extrinsics data.

The REST endpoint/path used to get extrinsics data.

Status Codes
200 OK – OK

PUT /perception/api/v1/extrinsics
Upload all extrinsics data.

The REST endpoint/path used to set all sensors extrinsic data.

Status Codes
200 OK – OK

131

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

DELETE /perception/api/v1/extrinsics
Clear all extrinsics data.

The REST endpoint/path used to clear all sensors extrinsic data.

Status Codes
200 OK – OK

GET /perception/api/v1/extrinsics/{sensor_id}
Access sensor extrinsics data.

The REST endpoint/path used to get extrinsics data for a given sensor_id

Parameters
sensor_id (integer) –

Status Codes
200 OK – OK

PUT /perception/api/v1/extrinsics/{sensor_id}
Upload sensor extrinsics data.

The REST endpoint/path used to set extrinsics for a given sensor_id.

Parameters
sensor_id (integer) –

Status Codes
200 OK – OK

DELETE /perception/api/v1/extrinsics/{sensor_id}
Remove sensor extrinsics data.

The REST endpoint/path used to remove extrinsics for a given sensor_id.

Parameters
sensor_id (integer) –

Status Codes
200 OK – OK

POST /perception/api/v1/extrinsics/icp
Run ICP algorithm on point clouds

Status Codes
200 OK – OK

132

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

10.5 Execution
PUT /perception/api/v1/execution/reset

Stop perception application. Operating system will restart the application

Status Codes
400 Bad Request – Bad Request
200 OK – OK

POST /perception/api/v1/execution/play
Play streaming of perception data

Status Codes
400 Bad Request – Bad Request
200 OK – OK

POST /perception/api/v1/execution/pause
Pause perception data stream

Status Codes
400 Bad Request – Bad Request
200 OK – OK

POST /perception/api/v1/execution/step
Step data stream

Step forward a single frame in the data stream.

Status Codes
200 OK – OK

PUT /perception/api/v1/execution/start_recording/{filename}
Start recording PCAP of all connected sensors with given filename

Parameters
filename (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

GET /perception/api/v1/execution/stop_recording
Stop recording PCAP

Status Codes
400 Bad Request – Bad Request
200 OK – OK

133

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

DELETE /perception/api/v1/execution/delete_recording/{filename}
Delete PCAP with given filename

Parameters
filename (string) –

Status Codes
400 Bad Request – Bad Request
200 OK – OK

GET /perception/api/v1/execution/list_recordings
Get list of of all recordings in a directory

Status Codes
400 Bad Request – Bad Request
200 OK – OK

10.6 Point Zones
GET /perception/api/v1/point_zones

Get all zones

Get all zones

Status Codes
400 Bad Request – Bad Request
200 OK – OK

PUT /perception/api/v1/point_zones
Add zones

Replace the current point zones

Status Codes
200 OK – OK

PUT /perception/api/v1/point_zones/{point_zone_id}
Add zone

Add/update point zone with given point_zone_id

Parameters
point_zone_id (integer) –

Status Codes
200 OK – OK

DELETE /perception/api/v1/point_zones/{point_zone_id}
Remove zone

Remove zone with given point_zone_id

134

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Parameters
point_zone_id (integer) –

Status Codes
200 OK – OK

10.7 Access
PUT /perception/api/v1/password

Set the login password for ouster user

Replace the current password for ouster user

Status Codes
200 OK – OK

10.8 Diagnostics
GET /perception/api/v1/alerts

Get alert data

Get alert data from the server.

Status Codes
200 OK – OK

GET /perception/api/v1/alerts/active
Get active alert data

Get active alert data from the server.

Status Codes
200 OK – OK

GET /perception/api/v1/alerts/logged
Get logged alert data

Get logged alert data from the server.

Status Codes
200 OK – OK

GET /perception/api/v1/telemetry
Get telemetry information

Get telemetry information from the server

Status Codes
200 OK – OK

135

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

GET /perception/api/v1/configuration
Get configuration information

Get all the configuration files from the server

Status Codes
200 OK – OK

10.9 Static
GET /perception/api/v1/about

Gets perception server’s static ‘about’ information

Get static system information from the server

Status Codes
200 OK – OK

136

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

11 Appendix

11.1 Code Samples
The LidarHub has open TCP ports which stream the occupancy and object data. The user can listen
to this data and create custom logic to fit their needs.

11.1.1 TCP Server Heartbeat Setup

The current TCP stream stops outputting data when there are no objects in the scene. When there are
no objects in the scene for an extended period of time, the recv() call may timeout. It is recommended
to configure a heartbeat message for the tcp_servers.

The heartbeat message only outputs when there are no objects present in the scene (when listening
to the object_list), or when there are no objects present in any event zone (when listening to the
occupations). The below LidarHub setting was used for the examples. Note that the heartbeat_message
can be modified to a different message.

"tcp_servers": [
{

"source": "object_list",
"port": 3302,
"data_hertz": 1,
"transmit_hertz": 1,
"heartbeat_interval_secs": 1,
"heartbeat_message": "{\"heartbeat\": [{}]}"

},

11.1.2 Simple Example

The following examples assume that the heartbeat message is configured for the LidarHub TCP
stream. The example assumes that a heartbeat message contains a key called heartbeat, and does
not process those frames.

The following example demonstrates how to connect to a TCP stream, which are open on ports 3302
and 3303. By default, the object_list data is streamed on port 3302, and the occupations data is
streamed on port 3303. The object_list output is the object count data for the whole scene, while the
occupations data is the zone occupation data.

For this example, note that the listening port can be changed with the PORT variable. The read_frames()
function takes in a socket_client, as well as a Callable function. The function is expected to take in
the JSON data as the first parameter, and then additional parameters can be passed in the same call
to read_frames(). The example below passes the python print function, which will print the JSON data
from the TCP stream.

#!/usr/bin/env python
"""
Example how to connect to a Ouster Detect TCP stream. Assumes that the object_list

(continues on next page)

137

(continued from previous page)

is streaming on port 3302, and that the heartbeat is set to
"heartbeat_message": "{\"heartbeat\": [{}]}".
"""

import json
import socket
import ssl

from typing import Callable

User defined variables. This is currently configured to listen to port
3302, which is by default is the `object_list` data.
HOST = "localhost"
PORT = 3302

Ouster Detect defined variables
ENDIAN_TYPE = "big"
FRAME_SIZE_B = 4
ADDRESS = (HOST, PORT)

def recv(socket_client: ssl.SSLContext, num_bytes: int) -> bytearray:
"""
Helper Function to recv n bytes or return an empty byte array if EOF is
hit.

Args:
socket_client (ssl.SSLSocket): The socket connected to the TCP
stream.
num_bytes (int): The number of bytes to receive

Returns:
bytearray: The read bytes from the socket. Empty bytearray on
timeout or connection reset.

"""
data = bytearray()

It is possible only part of the message is read. We loop until we
received the whole message
while len(data) < num_bytes:

remaining_bytes = num_bytes - len(data)
try:

packet = socket_client.recv(remaining_bytes)

If the socket times out or is reset, no data could be received.
except (socket.timeout, ConnectionResetError):

return bytearray()

Append the data
data.extend(packet)

return data

(continues on next page)

138

(continued from previous page)

def read_frames(
socket_client: ssl.SSLContext, callback_function: Callable, *args: tuple

) -> None:
"""
Indefinitely reads in frames of data. The first 4 bytes of the message is
expected to be the size of the message, and then that size will be read
immediately afterwards. Repeats until connection is lost.

Args:
socket_client (ssl.SSLSocket): The socket connected to the TCP
stream.
callback_function (Callable): The callback function to call when
receiving a valid set of data. The first parameter must be the
JSON from the TCP stream, and the remaining arguments will be passed
through args.
args (tuple): The remaining arguments of the callback_function.

"""
while True:

Gets the size of the frame
frame_size_b = recv(socket_client, FRAME_SIZE_B)

If the size is different than expected, we didn't receive a response.
Return None, signalling either a failure to read the message, or that
there were no present objects
if len(frame_size_b) == 0:

return

Convert the byte data to an integer, representing the number of bytes
of the message. Then read that size of data from the stream
frame_size = int.from_bytes(frame_size_b, ENDIAN_TYPE)
data = recv(socket_client, frame_size)

Received no data, return None
if len(data) == 0:

return

data = json.loads(data.decode("utf-8"))

If the dictionary contains "heartbeat" as a key, the message was a
heartbeat. Continue to the next message. Note that this is
configurable using the LidarHub settings.
if "heartbeat" in data.keys():

continue

callback_function(data, *args)

Create the ssl context
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
ssl_context.verify_mode = ssl.CERT_NONE
Create the socket client
socket_client = ssl_context.wrap_socket(socket.create_connection(ADDRESS))

This reads the frame data indefinitely. The first parameter is the socket.
(continues on next page)

139

(continued from previous page)

The next parameter is the callback function to pass the JSON data to.
Additional parameters can be passed to be passed onto the function. The
following line currently passes the JSON data to the print function. The
following line can be updated with a custom callback function
read_frames(socket_client, print)

Close the socket connection
socket_client.close()

11.1.3 Receiving objects from object_list

This is a continuation of the Simple Example. To connect to the object_list, the following code block
can be appended to the beginning of the script, proceeding the imports. This parses the json data,
and outputs the object’s position if it matches the correct classification.

def print_objects_by_class(data: dict, classification: str) -> None:
"""
Callback function to print out the timestamp and position of any objects
that match the classification type. Must be listening to the object_list.

Args:
data (dict): Dictionary containing the batched object data.
classification (str): Classification to print out for

"""
The data["object_list"] is a list containing the batched object_list data
for the frames. The number of batched object_lists is configurable in the
LidarHub settings using the `data_hertz` setting. See user manual for
more details of the structure. The following checks in read_frames() will
only enter this function if there is valid data. We use the first element
in the list.
timestamp = data["object_list"][0]["timestamp"]

for object_dict in data["object_list"][0]["objects"]:

Print out the object's position and its timestamp if the
classification is correct
if object_dict["classification"] == classification:

print(f"time: {timestamp}\tPosition: {object_dict['position']}")

The read_frames() line in the original Simple Example should be replaced with the following line, re-
sulting in a print on any PERSON classified objects. Notice that print_objects_by_class() takes in two
parameters, the first which must be the JSON data from the TCP stream, and the second being the
classification. The classification parameter is passed to the read_frames() call, which forwards it to
the print_objects_by_class() call. The following line prints for any objects that meet the “PERSON”
classification.

read_frames(socket_client, print_objects_by_class, "PERSON")

140

11.1.4 Reading zone data from occupations

This is continuation of the Simple Example. The occupations by default outputs to port 3303. Change
the PORT variable to 3303 (PORT = 3303) within the Simple Example.

To connect to the occupations, the following code block can be appended to the beginning of the script,
and after the imports. This parses the json data, and prints the object count within a specified zone.
The zone is identified using the zone_name parameter.

def print_occupation_count(data: dict, zone_name: str) -> None:
"""
Callback function to print out the object count within a specific zone. The
zone will be referenced by its name.

Args:
data (dict): Dictionary containing the batched object data.
classification (str): Classification to print out for

"""
queried_zone_data = {}

The data["occupations"] is a list containing the batched occupations data
for the frames. The number of batched occupations is configurable in the
LidarHub settings using the `data_hertz` setting. See user manual for
more details of the structure. The following checks in read_frames() will
only enter this function if there is valid data. We use the first element
in the list.

This finds the queried zone's data
for zone_data in data["occupations"][0]["occupations"]:

if zone_data["name"] == zone_name:
queried_zone_data = zone_data

If the dictionary is empty, return
if not queried_zone_data:

return

number_objects = len(queried_zone_data["objects"])
print(f"Number of objects in {zone_name}: {number_objects}")

The read_frames() in the original Simple Example should be replaced with the following line, resulting
in a print when there are any objects within the specified zone. Notice that print_occupation_count()
takes in two parameters, the first which must be the JSON data from the TCP stream, and the second
being the zone name. The zone name parameter is passed to the read_frames() call, which forwards it
to the print_occupation_count() call. The below call uses Zone-0 as the zone’s identifying name.

read_frames(socket_client, print_occupation_count, "Zone-0")

141

11.2 Sensor Placement
The goal of sensor placement can vary depending on usage but typically involves maximizing the
number of returns on objects of interest. This should take into account static obstacles, for example
buildings, traffic light or furniture as well as dynamics obstacles such as vehicles or pedestrians.

For some use cases single sensors are appropriate but for others multiple sensors are required. Sen-
sors should be placed to maximize the number of returns on objects of interest.

11.2.1 Tips for individual sensor placement

Sensor field of view and maximum range should be taken into account. The maximum tracking
range is less than themaximum range of the sensor due to aminimumnumber of point on targets
in order to indentify it.

Suggested tracking range for Rev6 sensors are. * OS-O: 25 meters * OS-1: 45 meters * OS-2:
60 meters

Sensor must mounted on static position. Sensor movement will result in poor tracking. Typically
mounting on poles or building works, but be carefull with traffic pole supporting arms because
they may move in the wind.

Ouside sensors should be placed higher that typical maximum vehicle heights (3m as a base-
line). Higher sensor mounting height does result in wider blind spots around non dome sensor
so multiple sensors may be required if a buffer zone around the sensor is unacceptable.

Inside sensors should be place on ceilings or above obstacles if possible.

Sensorsmay be angled or placed flat. Angled can get better coverage in one direction, but results
in larger blind spots behind the sensor.

Take into account the sensor FOV’s. The FOV’s of sensors are: * OS-0 += 45 degrees from hori-
zontal * OS-1 +- 22.5 degrees from horizontal * OS-2 += 11.25 degrees from horizontal

11.2.2 Multi-Sensor Usage

Multiple sensors can help improve coverage in different monitoring situations:

They can avoid blindspot, for example there is typically a blindspot under sensors and on multi-
lane roads large vehicles may shield smaller vehicles from view.

They also increase coverage area, either by being seperated geographicaly or angularily.

Data from multiple sensors is fused so that if an object is seen by multiple sensors it will have
improved accuracy.

142

11.2.3 Procedure for planning multi sensor locations

Start with a map of floorplan of the area. A satellite view of the area is ideal if it is up to date
because it includes locations of most obstacles.

Figure out the priority areas of interest on the map. That may be a single area or the whole map.
Draw those areas on the map.

It is easiest to start by assuming the sensor are placed flat. Depending on the sensor height a
X by X donut can be drawn on the map. Look for ideal placement locations with good views in
many directions. These may vary depending on already placed poles, walls or other features.

For an OS-0, the circle should have an outer radius of ~25 m (max tracking range) and an
inside radius of the sensor height.

For an OS-1, the circle should have an outer radius of ~45 M (max tracking range) and an
inside radius of 2.4 times the sensor height.

For an OS-2, the circle should have an outer radius of ~60 M (max tracking range) and an
inside radius of 5 times the sensor height.

Figure 11.1: Example of sensor coverage on a map

This will give an initial ideal of what can be covered. Move the sensor around to try to figure out good
placement. If you need continuous coverage of the whole area sensors will have to cover the blind
spots of each other. If good coverage cannot be obtained with flat sensors they can be tilted. This will
reduce the inner radius on the ground in one direction but increase it in the other.

143

11.3 Enabling PTP & Phase Lock
PTP is network time synchronization protocol. Enabling PTP on a Catalyst device will enable Ouster
sensors to use Phase Lock configuration. Phase Lock will synchronize the phase of multiple Ouster
sensors to improve tracking performance in high speed environments. To find more information re-
garding PTP, PMC and System Clock synchronization refer to the Ouster Firmware User Manual.

11.3.1 Enabling PTP on Catalyst as the Master Clock

1. SSH into the edgeproc as a user with superuser access.

2. update:

sudo apt update

3. Install dependencies:

sudo apt install linuxptp chrony ethtool

4. Identify the interfaces in which sensors are connected. PTP will need to be enabled on all these
interfaces. (enp2s0f0 - enp2s0f3 on the Catalyst-Pro)

5. Open /etc/linuxptp/ptp4l.conf as sudo a. Insert each interface enclosed in [] at the END of the
file b. If enabling more than one interface, the interfaces need to share 1 hardware clock. To
do this, enable the boundary_clock_jbod c. Configure ptp4l of this edgeproc as the the Master
Clock by changing clockClass to lower value

…
#clockClass 248 #comment out this line and insert below
clockClass 128
…
Boundary_clock_jbod 1 #leave at 0 if only 1 interface is required
…
[interface_1] #end of file
[interface_x]

6. Create override for ptp4l override file:

sudo mkdir -p /etc/systemd/system/ptp4l.service.d

7. Create the override file /etc/systemd/system/ptp4l.service.d/override.conf. This file ensures your
modified ptp4l.conf is used by the systemd service.

[Service]
ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

8. Reload and restart the systemd process with the changes. When querying the status there will
be a reference to the override created in step 7.

sudo systemctl daemon-reload
sudo systemctl restart ptp4l
sudo systemctl status ptp4l

144

https://ouster.com/downloads/

11.4 Enabling PTP & Phase Lock on Ouster Sensor
1. On each sensor configuration page change the Timestamp Mode under the Timing section to

time_from_ptp_1588.

2. Also in the Timing section, select the Phase Lock radio button.

3. Apply Config and Persist Active Config.

4. Query the sensor’s HTTP API to ensure PTP is operational. This command will return a JSON
response.

curl -i http://{sensor-hostname}/api/v1/time/ptp

parent_data_set.grandmaster_identity should list the identity of the local grandmaster

port_data_set.port_state should be SLAVE

time_status_np.gm_present should be true

time_status_np.master_offset which is given in nanoseconds, should be less than 250000. This
equates to 250 microseconds.

5. Query the sensor’s HTTP API to ensure Phase Lock is operational. This command will return a
JSON response.

curl -i http://{sensor-hostname}/api/vi/telemetry

phase_lock_status should be ENABLED

145

HTTP Routing Table
/
GET /, 128

/perception
GET /perception/api/v1, 128
GET /perception/api/v1/, 128
GET /perception/api/v1/about, 136
GET /perception/api/v1/alerts, 135
GET /perception/api/v1/alerts/active, 135
GET /perception/api/v1/alerts/logged, 135
GET /perception/api/v1/configuration, 135
GET /perception/api/v1/execution/list_recordings,

134
GET /perception/api/v1/execution/stop_recording,

133
GET /perception/api/v1/extrinsics, 131
GET /perception/api/v1/extrinsics/{sensor_id},

132
GET /perception/api/v1/point_zones, 134
GET /perception/api/v1/profile/{profile}, 130
GET /perception/api/v1/profiles, 131
GET /perception/api/v1/sensor, 128
GET /perception/api/v1/sensor/{status}, 129
GET /perception/api/v1/settings, 130
GET /perception/api/v1/telemetry, 135
POST /perception/api/v1/execution/pause, 133
POST /perception/api/v1/execution/play, 133
POST /perception/api/v1/execution/step, 133
POST /perception/api/v1/extrinsics/icp, 132
POST /perception/api/v1/settings, 130
PUT /perception/api/v1/execution/reset, 133
PUT /perception/api/v1/execution/start_recording/{filename},

133
PUT /perception/api/v1/extrinsics, 131
PUT /perception/api/v1/extrinsics/{sensor_id},

132
PUT /perception/api/v1/password, 135
PUT /perception/api/v1/pcap, 129
PUT /perception/api/v1/point_zones, 134
PUT /perception/api/v1/point_zones/{point_zone_id},

134
PUT /perception/api/v1/profile/{profile}, 130
PUT /perception/api/v1/restore_profile/{profile},

131
PUT /perception/api/v1/sensor/{hostname}, 129
PUT /perception/api/v1/set_profile/{profile},

130

DELETE /perception/api/v1/execution/delete_recording/{filename},
133

DELETE /perception/api/v1/extrinsics, 131
DELETE /perception/api/v1/extrinsics/{sensor_id},

132
DELETE /perception/api/v1/point_zones/{point_zone_id},

134
DELETE /perception/api/v1/profile/{profile}, 130
DELETE /perception/api/v1/sensor, 128
DELETE /perception/api/v1/sensor/{sensor_id},

129

146

	Important Safety Information
	Safety & Legal Notices
	Proper Assembly, Maintenance and Safe Use
	Assemblage correct et utilisation sûre

	Ouster Detect Introduction
	Additional Technical Documentation

	Using an Edge Processor
	Requirements
	Catalyst Pro
	Catalyst Lite

	Connecting Sensors to the Edge Processor
	Connecting to the Edge Processor

	Using 3rd Party Hardware
	Computer Requirements
	Installing Docker
	Installing the Ouster Agent
	Installing Ouster Detect Docker Images
	Install Detect from Compressed Archive

	Running Docker Images

	Getting Started with Ouster Detect
	Connecting to the Ouster Detect GUI
	Activating the Software License

	GUI Overview
	Layout
	Header
	Left Pane - Viewer
	Left Pane - Setup
	Right Pane - Viewer
	Right Pane - Setup
	Feedback Line
	Viewport
	Content

	Viewer
	Tools
	Left Pane
	Perception
	Zones
	Clouds
	Right Properties Pane

	Zones
	Zone Workflow

	Recording
	Recording a PCAP
	Downloading a Recording
	Deleting a Recording
	Important Recording Notes

	Sensor Management
	Adding Sensors
	Removing Sensors
	Configuring Sensors
	Sensor Alignment Tools
	General Alignment Procedure

	Diagnostics
	Settings
	JSON Pane

	Lidar Hub
	Preferences

	Lidar Hub Overview
	Architecture
	Application Configuration
	Primary application Fields
	Optional Application Fields
	Perception Streams Configuration
	Primary perception Fields
	Optional perception Fields

	System Logging
	Configuration
	Primary logging Fields
	Optional logging Fields

	Ouster Connect
	Configuration
	Primary ouster_connect Fields
	Optional ouster_connect Fields

	World
	Configuration
	Primary World Fields
	Optional World Fields

	System Diagnostics
	Output: Attributes
	Output: Telemetry
	Output: Alerts

	Aggregation
	Configuration
	Primary aggregation Fields
	Optional aggregation Fields
	Output: Real-Time Events
	Output: Timeseries Aggregates

	JSON Data Streams w/Down-sampling, Batching & Field Mapping
	MQTT Publisher Configuration
	Primary mqtt_publishers Fields
	Optional mqtt_publishers Fields

	TCP Relay Server Configuration
	Primary tcp_servers Fields
	Optional tcp_servers Fields

	Event Data Recorder
	Configuration
	Primary data_recorder Fields
	Optional data_recorder Fields
	Accessing Event Data

	JSON Data Recorder
	Configuration
	Primary data_recorder Fields
	Optional data_recorder Fields
	Accessing JSON Data

	Binary Data Recorder
	Configuration
	Primary data_recorder Fields
	Optional data_recorder Fields
	Accessing Binary Data

	Connecting to Output
	Object List Data
	Occupation Data
	Aggregation
	Telemetry Data
	Alert Data
	Publishing Configuration
	Downsampling and Batching
	Mapping
	Publishing Protocols

	TCP stream
	MQTT

	Networking Guide - Ouster sensors
	Networking Terminology
	Windows
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	macOS
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor

	Linux
	Connecting the Sensor
	Setting the Interface to Link-Local Only
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	Perception API
	default
	Sensor Management
	Settings
	Registration
	Execution
	Point Zones
	Access
	Diagnostics
	Static

	Appendix
	Code Samples
	TCP Server Heartbeat Setup
	Simple Example
	Receiving objects from object_list
	Reading zone data from occupations

	Sensor Placement
	Tips for individual sensor placement
	Multi-Sensor Usage
	Procedure for planning multi sensor locations

	Enabling PTP & Phase Lock
	Enabling PTP on Catalyst as the Master Clock

	Enabling PTP & Phase Lock on Ouster Sensor

	HTTP Routing Table

