
Ouster Firmware User Manual
 Firmware v3.1.0 for all Ouster sensors

Ouster

Apr 28, 2025

Contents
1 Important Safety Information 7

1.1 Safety & Legal Notices . 7
1.1.1 Compliance Certifications for Ouster Rev7 Sensors 10
1.1.2 Definition of Symbols on the Sensor label . 11

1.2 Proper Assembly, Maintenance and Safe Use . 12
1.2.1 Assemblage correct et utilisation sûre . 12

2 Quick Start Guide 14
2.1 What’s in the box . 14
2.2 Sensor Setup . 15
2.3 Network Configuration . 16
2.4 Sensor Web Interface . 18
2.5 Updating Firmware . 21

3 Typical Sensor Operation 22

4 Sensor Data 23
4.1 Coordinate Frames and XYZ Calculation . 23

4.1.1 Lidar Coordinate Frame . 23
4.1.2 Lidar Range to XYZ . 24
4.1.3 Sensor Coordinate Frame . 26
4.1.4 Combining Lidar and Sensor Coordinate Frame . 27
4.1.5 Lidar Intrinsic Beam Angles . 27
4.1.6 Lidar Range Data To Sensor XYZ Coordinate Frame 27
4.1.7 IMU Data To Sensor XYZ Coordinate Frame . 28

5 Lidar Data Packet Format 29
5.1 Configurable Data Packet Format . 30

5.1.1 Lidar Data Format . 30
5.1.2 Channel Data Profiles . 33
5.1.3 RNG19_RFL8_SIG16_NIR16 Return Profile . 35
5.1.4 RNG15_RFL8_NIR8 Return Profile . 37
5.1.5 RNG19_RFL8_SIG16_NIR16_DUAL Return Profile . 39

5.2 FUSA_RNG15_RFL8_NIR8_DUAL Return Profile . 41
5.2.1 Lidar Data Format . 41
5.2.2 Packet Size Calculation . 44

5.3 LEGACY Data Packet Format . 45
5.4 Calibrated Reflectivity . 45

5.4.1 Reflectivity Data Mapping . 46
5.5 IMU Data Format . 48

5.5.1 Configurable IMU Scale . 49

6 Feature Guides 50
6.1 Cold Start . 50

6.1.1 Hardware Requirements . 50
6.1.2 Cold Start Operation . 50
6.1.3 Indications and Alerts . 51

6.2 Sensor Telemetry . 51
6.2.1 GET /api/v1/sensor/telemetry . 52

2

6.3 Azimuth Window . 53
6.3.1 Expected Sensor Behavior . 53
6.3.2 Azimuth Laser Masking . 54
6.3.3 Azimuth Window Examples . 54

6.4 Standby Operating Mode . 54
6.4.1 Expected Sensor Behavior . 55
6.4.2 Standby Operating Mode Examples . 55

6.5 Signal Multiplier . 55
6.5.1 Use Cases . 56
6.5.2 Expected Behavior . 56

6.6 Sensor Performance by Operating Configuration . 57
6.6.1 Estimated range multiplier . 57
6.6.2 Maximal representable range . 59

6.7 Shot Limiting . 60
6.8 Minimum Range Threshold . 63

6.8.1 Configuring min_range . 63
6.8.2 Use Cases . 63

6.9 Return Order . 65
6.9.1 Overview . 65
6.9.2 Sorting Returns . 65

6.10 User Editable Data Field . 67
6.10.1 Example Use Case: . 67
6.10.2 Proposed Solution: . 67
6.10.3 Implementation of the Proposed Solution: . 67
6.10.4 Customer Signing Process: . 68
6.10.5 Customer System Validation: . 68
6.10.6 HTTP Endpoints for User Editable Field (UEF) . 68
6.10.7 HTTP Endpoints for Optional Parameters - data policy 68
6.10.8 Optional Parameters - include_metadata . 69

7 Multi-Sensor Synchronization 70
7.1 Phase Lock . 70

7.1.1 Phase Locking Reference Frame . 70
7.1.2 Phase Locking Commands . 70
7.1.3 Multi-sensor Example . 71
7.1.4 Accuracy . 73
7.1.5 Phase Locking Alerts . 73

7.2 Inter-sensor Interference Mitigation . 74
7.2.1 Two Sensor Example . 74

8 Time Synchronization 78
8.1 Timing Overview Diagram . 78
8.2 Sensor Time Source . 79

8.2.1 Setting Ouster Sensor Time Source . 79
8.2.2 External Trigger Clock Source . 81

8.3 NMEA Message Format . 82
8.3.1 Example 1 Message: . 83
8.3.2 Example 2 Message: . 84

9 GPS/GNSS Synchronization Guide 85
9.1 Configuring the Ouster Sensor . 85

9.1.1 Checking for Sync . 86

3

10 Sensor Configuration 88
10.1 Overview . 88
10.2 Description . 90

10.2.1 udp_dest . 90
10.2.2 udp_port_lidar . 90
10.2.3 udp_port_imu . 90
10.2.4 sync_pulse_in_polarity . 90
10.2.5 sync_pulse_out_polarity . 91
10.2.6 sync_pulse_out_frequency . 91
10.2.7 sync_pulse_out_angle . 91
10.2.8 sync_pulse_out_pulse_width . 91
10.2.9 nmea_in_polarity . 92
10.2.10nmea_ignore_valid_char . 92
10.2.11 nmea_baud_rate . 92
10.2.12nmea_leap_seconds . 93
10.2.13azimuth_window . 93
10.2.14signal_multiplier . 93
10.2.15udp_profile_lidar . 94
10.2.16udp_profile_imu . 94
10.2.17phase_lock_enable . 94
10.2.18phase_lock_offset . 94
10.2.19lidar_mode . 95
10.2.20timestamp_mode . 95
10.2.21multipurpose_io_mode . 95
10.2.22operating_mode . 96
10.2.23min_range_threshold_cm . 96
10.2.24return_order . 96
10.2.25gyro_fsr . 97
10.2.26accel_fsr . 97

11 HTTP API Reference Guide 99
11.1 Sensor Metadata . 99

11.1.1 GET /api/v1/sensor/metadata/sensor_info . 99
11.1.2 GET /api/v1/sensor/metadata/lidar_data_format 100
11.1.3 GET /api/v1/sensor/metadata/imu_data_format . 101
11.1.4 GET /api/v1/sensor/metadata/beam_intrinsics . 102
11.1.5 GET /api/v1/sensor/metadata/imu_intrinsics . 103
11.1.6 GET /api/v1/sensor/metadata/lidar_intrinsics . 103
11.1.7 GET /api/v1/sensor/metadata/calibration_status . 103
11.1.8 GET /api/v1/sensor/config . 104
11.1.9 POST /api/v1/sensor/config – Multiple configuration parameters 105
11.1.10 GET /api/v1/sensor/config/operating_mode . 108
11.1.11 PUT /api/v1/sensor/config/operating_mode . 108
11.1.12 DELETE /api/v1/sensor/config . 109
11.1.13 GET /api/v1/sensor/metadata . 109

11.2 User Editable Data . 111
11.2.1 GET /api/v1/user/data . 112
11.2.2 PUT /api/v1/user/data . 112
11.2.3 DELETE /api/v1/user/data . 113
11.2.4 Optional Parameters – data policy . 113
11.2.5 Optional Parameters – include_metadata . 114

11.3 System . 116

4

11.3.1 POST /api/v1/system/restart . 116
11.3.2 GET /api/v1/system/firmware . 117
11.3.3 POST /api/v1/system/firmware . 117
11.3.4 GET /api/v1/system/network . 118
11.3.5 GET /api/v1/system/network/ipv4 . 119
11.3.6 GET /api/v1/system/network/ipv4/override . 119
11.3.7 PUT /api/v1/system/network/ipv4/override . 120
11.3.8 DELETE /api/v1/system/network/ipv4/override . 121
11.3.9 GET /api/v1/system/network/speed_override . 122
11.3.10 PUT /api/v1/system/network/speed_override . 122
11.3.11 DELETE /api/v1/system/network/speed_override 123

11.4 Time . 123
11.4.1 GET /api/v1/time . 123
11.4.2 GET /api/v1/time/sensor . 126
11.4.3 GET /api/v1/time/system . 127
11.4.4 GET /api/v1/time/ptp . 128
11.4.5 GET /api/v1/time/ptp/profile . 130
11.4.6 PUT /api/v1/time/ptp/profile . 131

11.5 Alerts, Diagnostics and Telemetry . 131
11.5.1 GET /api/v1/sensor/alerts . 132
11.5.2 GET /api/v1/sensor/alerts?cursor=1 . 135
11.5.3 GET /api/v1/sensor/alerts?mode=summary . 135
11.5.4 GET /api/v1/sensor/alerts?cursor=2&mode=summary 136
11.5.5 GET /api/v1/diagnostics/dump . 137
11.5.6 GET /api/v1/sensor/telemetry . 138

12 TCP API Guide (Deprecated) 139

13 API Changelog 140
13.1 Firmware v3.1.0 . 140
13.2 Firmware v3.0.1 . 140
13.3 Firmware v3.0.0 . 141

14 Troubleshooting 142
14.1 Sensor Homepage and HTTP Server . 142
14.2 Networking . 142
14.3 Using Latest Firmware . 142
14.4 Alerts and Errors . 143

14.4.1 Alerts Example . 144
14.4.2 Table of All Alerts and Errors . 147

15 Networking Guide 172
15.1 Networking Terminology . 172
15.2 Windows . 174

15.2.1 Connecting the Sensor . 174
15.2.2 The Sensor Homepage . 174
15.2.3 Determining the IPv4 Address of the Sensor . 174
15.2.4 Determining the IPv4 Address of the Interface . 175
15.2.5 Setting the Host Interface to DHCP . 176
15.2.6 Setting the Host Interface to Static IP . 177
15.2.7 Finding a Sensor with mDNS Service Discovery . 177

15.3 macOS . 179

5

15.3.1 Connecting the Sensor . 180
15.3.2 The Sensor Homepage . 180
15.3.3 Determining the IPv4 Address of the Sensor . 180
15.3.4 Determining the IPv4 Address of the Interface . 181
15.3.5 Setting the Host Interface to DHCP . 183
15.3.6 Setting the Host Interface to Static IP . 184
15.3.7 Finding a Sensor with mDNS Service Discovery . 185

15.4 Linux . 188
15.4.1 Connecting the Sensor . 188
15.4.2 Setting the Interface to Link-Local Only . 189
15.4.3 The Sensor Homepage . 190
15.4.4 Determining the IPv4 Address of the Sensor . 190
15.4.5 Determining the IPv4 Address of the Interface . 192
15.4.6 Setting the Host Interface to DHCP . 193
15.4.7 Setting the Host Interface to Static IP . 194
15.4.8 Finding a Sensor with mDNS Service Discovery . 196

16 Appendix 198
16.1 PTP Profiles Guide . 198

16.1.1 Overview . 198
16.1.2 PTP HTTP API . 198
16.1.3 Enabling the PTP profiles . 199

16.2 PTP Quickstart Guide . 201
16.2.1 Overview . 201
16.2.2 Configurations . 204
16.2.3 Verifying Operation . 209

16.3 Analyzing Linux Networking Issues . 214
16.3.1 Link Layer Statistics and Configuration . 214
16.3.2 IP Statistics . 221
16.3.3 Useful network debugging tools . 222

17 Errata and Notices 224
17.1 Firmware v3.0.x Safety Notice . 224
17.2 Sensor restarts after long-term continuous operation . 225

17.2.1 Proposed workaround . 226

18 Firmware Changelog 229
18.1 Firmware v3.1.0 . 229
18.2 Firmware v3.0.1 . 231
18.3 Firmware v3.0.0 . 231

6

1 Important Safety Information

1.1 Safety & Legal Notices

All Ouster sensors have been evaluated to be Class 1 laser products per 60825-1: 2014 (Ed. 3) and
operate in the 865nm band.

Tous les capteurs Ouster répondent aux critères des produits laser de classe 1, selon la norme IEC
60825-1: 2014 (3ème édition) et émettent dans le domaine de l’infrarouge, à une longueur d’onde
de 865nm environ.

FDA 21CFR1040 Notice: All Ouster sensors comply with FDA performance standards for laser prod-
ucts except for deviations pursuant to Laser Notice No. 56, dated January 19, 2018.

Notice FDA 21CFR1040: Tous les capteurs Ouster sont conformes aux exigences de performances
établies par la FDA pour les produits laser, à l’exception des écarts en application de l’avis nº56, daté
du 19 janvier 2018.

The following symbols appear on the product label and in the usermanual have the followingmeaning.

Table 1.1: Safety Symbols

Fig. 1.1: Class 1 Laser Product
Fig. 1.2: Caution “Sharp Edges”

Table 1.2: Safety Symbols (Cntd.)

Fig. 1.3: This symbol indicates that the sensor
emits laser radiation

Fig. 1.4: This symbol indicates the presence of a
hot surface that may cause skin burn

7

CAUTIONS

All Ouster sensors are hermetically sealed units, and are non user-serviceable.

Use of controls, or adjustments, or performance of procedures other than those specified herein,
may result in hazardous radiation exposure.

Use of any Ouster sensor is subject to the Terms of Sale that you agreed and signed with Ouster
or your distributor/integrator. Included in these terms are the prohibitions of:

Removing or otherwise opening the sensor housing

Inspecting the internals of the sensor

Reverse-engineering any part of the sensor

Permitting any third party to do any of the foregoing

Operating the sensor without the attached mount that is shipped with the sensor, or attaching
the sensor to a surface of inappropriate thermal capacity runs the risk of having the sensor
overheat under certain circumstances.

The Ouster sensor features a modular cap design to enable more flexible mounting and integra-
tion solutions for the sensor.

The modular cap design increases design flexibility but it does not remove the need for ther-
mal management on top of the sensor. The attached radial cap serves an important thermal
management purpose and the sensor will not operate properly without a cap.

Operation for extended periods of time without the cap will result in system errors and the sen-
sor overheating. The cap can be replaced with alternative solutions but it cannot be left off
altogether.

If you wish to operate the sensor with a custom mounting solution, please contact our Field Ap-
plication Team and we can answer your questions and provide guidance for achieving proper
operations.

This product emits Class 1 invisible laser radiation. The entire window is considered to be the
laser aperture. While Class 1 lasers are considered to be “eye safe”, avoid prolonged direct view-
ing of the laser and do not use optical instruments to view the laser.

When operated in an ambient temperature >40�°C, the metallic surfaces of the sensor may be
hot enough to potentially cause skin burn. Avoid skin contact with the sensor’s base, lid and
the heatsink when the sensor is operated under these conditions. The sensor should not be
used in an ambient temperature above 60°C. The maximum safety certified ambient operating
temperature is 60°C.

8

https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.atlassian.net/servicedesk/customer/portal/8

PRECAUTIONS:

Tous les capteurs Ouster sont des unité hermétiquement scellée, qui ne peut être entretenue ou
modifiée par l’utilisateur.

L’utilisation de commandes, de réglages, ou l’exécution de procédures autres que celles spéci-
fiées dans le présent document peuvent entraîner des rayonnements laser dangereux.

L’utilisation d’un capteur Ouster est soumise aux conditions de vente signées avec Ouster ou le
distributeur/intégrateur, incluant l’interdiction de:

Retirer ou ouvrir de quelque façon le boîtier du capteur

Analyser les composants internes du capteur

Pratiquer la rétro-ingénierie de toute ou partie du capteur

Autoriser une tierce personne à mener les actions listées ci-dessus

L’utilisation du capteur sans le support (fourni avec les capteur) ou sans contact avec une sur-
face ayant des capacités thermiques adéquates peut entraîner une surchauffe du capteur dans
certaines conditions.

Ce capteur présente une conception avec un dissipateur thermique supérieur modulaire, ceci
pour apporter plus de flexibilité de montage et d’intégration au capteur.

Cette conception modulaire augmente la flexibilité de conception mais ne supprime pas le be-
soin de dissipation thermique au-dessus du capteur. Le dissipateur thermique radial fourni est
essentiel à une bonne gestion thermique. Le capteur ne fonctionnera pas correctement sans
cette pièce.

Une utilisation prolongée du capteur sans le dissipateur thermique supérieur peut résulter à des
erreurs système ainsi qu’à une surchauffe du capteur pouvant aller jusqu’à son extinction. Le
dissipateur thermique fourni peut être remplacé par une autre solution de dissipation thermique
adéquate, mais ne doit pas être simplement retiré.

Si vous souhaitez utiliser votre capteur avec une dissipation thermique personnalisée, merci de
contacter notre Équipe Support qui pourra répondre à vos questions et vous apporter le support
et le conseil nécessaire.

Ce produit émet un rayonnement laser invisible de classe 1. L’ouverture de sortie du laser est
constituée par la fenêtre du capteur dans sa totalité. Même si les lasers de classe 1 ne sont pas
considérés comme dangereux pour les yeux, ne regardez pas directement le rayonnement laser
de façon prolongée et n’utilisez pas d’instruments optiques pour observer le rayonnement laser.

Lors d’une utilisation à température ambiante supérieure à 40°C, la surface métallique du cap-
teur peut présenter des risques de brûlures pour la peau. Dans ces conditions, il est important
d’éviter tout contact avec la partie supérieure, la base ou le dissipateur thermique du capteur.
Le capteur ne doit pas être utilisé à une température ambiante supérieure à 60˚C. 60˚C est la
température maximale certifiée d’opération sûre du capteur.

9

https://ouster.atlassian.net/servicedesk/customer/portal/8

Equipment Label: Includesmodel and serial number and a notice that states the unit is a Class 1 Laser
Product, is affixed to the underside of the Sensor Enclosure Base. It is only visible after the attached
mount with which the Sensor is shipped, is removed. For location details please refer to the hardware
user manual.

L’étiquette de l’équipement, comprenant le modèle, le numéro de série, et la classification du produit
laser (ici, classe 1), est apposée au-dessous de la base du boîtier du capteur. Il n’est visible qu’après
avoir retiré le diffuseur de chaleur avec lequel le capteur est expédié. L’emplacement est décrit pré-
cisément dans le manuel d’utilisation du matériel.

Electromagnetic Compatibility: The Ouster sensors are an FCC 47 CfR 15 Subpart B device. This
device complies with part 15 of the FCCRules. Operation is subject to the following conditions: (1) This
devicemay not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

1.1.1 Compliance Certifications for Ouster Rev7 Sensors

US/Canada

Laser Safety

EN/IEC 60825-1:2014 – Class 1 eye safe

FDA US 21CFR1040 Notice 56 – Class 1 eye safe

Product Safety

UL 62368-1 – Safety standard for AV and IT equipment

UL 60950-22 – Outdoor use certification

CSA-C22.2 No. 62368-1-19 – Canada-specific safety standard for AV and IT equipment

CSA-C22.2 No. 60950-22-07 – Outdoor use certification

Electromagnetic Compatibility (EMC)

FCC 47 CFR Part 15, Subpart B, Class A – Electromagnetic interference compliance for in-
dustrial environments

European Union (EU)

Laser Safety:

EN/IEC 60825-1:2014 – Class 1 eye safe

Product Safety:

EN/IEC 62368-1 – Safety of AV and IT equipment

EMC Standards:

EN55032:2012/AC2013; CISPR 32:2015 – Electromagnetic emissions formultimedia equip-

10

ment

EN 55035:2017/A11:2020 – Immunity requirements for multimedia equipment

EN 61000-3-2:2014 – Harmonic current emissions limits

EN 61000-3-3:2013 – Voltage fluctuation and flicker requirements

Korea

KS C 9832:2023 – Electromagnetic emissions compliance for multimedia and IT equipment

KS C 9835:2019 – Electromagnetic immunity compliance

Australia/New Zealand

AS/NZS CISPR 32:2015 – Electromagnetic emissions standard for multimedia equipment

1.1.2 Definition of Symbols on the Sensor label

TheCEMark signifies compliance with applicable EU directives for safety, EMC, and environmen-
tal standards, etc.

The UKCAMark indicates compliance applicable UK directives for safety, EMC, and environmen-
tal standards, etc.

The KCCMark is displayed on the product to indicate compliance with the South Korean regula-
tory standards.

METMark is the symbol of MET Labs, a Nationally Recognized Test Laboratory (NRTL) and indi-
cates compliance to US/Canada product safety standards.

Figure 1.5: This is an example label image to show all symbols present

Note

Rev7 sensors manufactured prior to May 2024 are identified by a product part number (prod_pn)
in the format 860-10xxxx-07. Starting from May 2024, Rev7 sensors use a new prod_pn format
OSx-070-xxx-xx.

“Ouster” and Ouster sensors are both registered trademarks of Ouster, Inc. They may not be used
without express permission from Ouster, Inc.

11

If you have any questions about the above points, contact us at legal@ouster.io.

1.2 Proper Assembly, Maintenance and Safe Use

All Ouster sensors can be easily set up by following the instructions outlined in the hardware user
manual. Any mounting orientation is acceptable. Each sensor is shipped with an attached mount that
can be used for test or normal use within the specified operating conditions. The sensor may also be
affixed to any other user specific mount of appropriate thermal capacity. Please contact Ouster for
assistance with approving the use of user specific mounting arrangements.

Any attempt to utilize the sensor outside the environmental parameters delineated in the relevant data
sheet for your Ouster sensor may result in voiding the warranty.

When power is applied, the sensor powers up and commences boot-up with the laser disabled. The
boot-up sequence is approximately 30s in duration, afterwhich the internal sensor optics subassembly
commences spinning, the laser is activated, and the unit operates in the default 1024 x 10 Hz mode if
no configuration is saved. When the sensor is running, and the laser is operating, a faint red flickering
light may be seen behind the optical window.

Note

All Ouster sensors utilize an 865nm infrared laser that is only dimly discernible to the naked eye.
The sensor is fully Class 1 eye safe, though Ouster strongly recommends against peering into the
optical window at close range while the sensor is operating. Ouster sensors are equipped with a
multi-layer series of internal safety interlocks to ensure compliance to Class 1 Laser Eye Safe limits.

All Ouster sensors are hermetically sealed units, and are not user-serviceable. Any attempt to unseal
the enclosure has the potential to expose the operator to hazardous laser radiation.

The sensor user interface may be used to configure the sensor to a number of combinations of scan
rates and resolutions other than the default values of 1024 x 10 Hz resolution. In all available combi-
nations, the unit has been evaluated by an NRTL to remain within the classification of a Class 1 Laser
Device as per IEC 60825-1:2014 (Ed. 3).

1.2.1 Assemblage correct et utilisation sûre

Tous les capteurs Ouster s’installe facilement en fixant la base sur un support percé de trous concor-
dants, et en suivant les instructions d’interconnexion décrites dans le manuel d’utilisation dumatériel.
Toute orientation de montage est acceptable. Chaque capteur est expédié équipé d’un dissipateur de
chaleur, utilisable en phase de test et en conditions normales. Néanmoins tout autre support présen-
tant une capacité thermique appropriée pour l’application de l’utilisateur peut être utilisé. Veuillez
contacter Ouster dans le cas où un montage spécifique à votre application serait nécessaire.

Toute tentative d’utilisation du capteur en dehors des paramètres environnementaux définis dans la
fiche technique de votre capteur Ouster peut entraîner l’annulation de la garantie.

Lorsque le capteur est sous tension, celui-ci démarre et commence son initialisation avec le laser

12

mailto:legal@ouster.io

désactivé. Le temps de démarrage est d’environ 30s, après quoi le sous-système optique entre en ro-
tation et le laser est activé, le capteur opère alors dans son mode par défaut de 1024 x 10 Hz. Lorsque
le capteur est en marche et que le laser est activé, on peut apercevoir une faible lumière rouge vacil-
lante derrière la vitre teintée. Tous les capteurs Ouster utilisent une longueur d’ondes infra-rouge de
865nm à peine perceptible pour l’œil humain, et le rayonnement laser IR émis est sans danger pour les
yeux. Cependant, bien que les rayonnements laser de classe 1 soient sans danger dans des conditions
raisonnablement prévisibles, Ouster recommande fortement de ne pas regard er fixement la vitre tein-
tée pendant que le capteur est en marche. Tous les capteurs Ouster sont des unités hermétiquement
scellées, qui ne peuvent pas être entretenues, modifiées ou réparées par l’utilisateur. Toute tentative
d’ouverture du boîtier a pour risque d’exposer l’opérateur à un rayon-nement laser dangereux.

Les capteurs Ouster sont équipés d’une série de dispositifs de sécurité à plusieurs niveaux, de façon à
assurer en toutes circonstances le respect des limites d’irradiance correspondant aux rayonnements
lasers de classe 1, sans danger pour les yeux.

L’interface utilisateur du logiciel du capteur peut être utilisée pour configurer le capteur selon un cer-
tain nombre de combinaisons de vitesses de balayage et de résolutions autres que les valeurs utilisées
par défaut, respectivement de 1024 x 10 Hz.

13

2 Quick Start Guide

This Firmware User Manual is meant to allow the users to take advantage of all the features that are
available with Ouster Sensors. Detailed Instructions regarding lidar operations, lidar data, API Guides
and Troubleshooting guide are present in this user manual.

For information on the mechanical and electrical operations or the interface box, please refer to the
Hardware User Manual.

To know more about Ouster sensors and their specifications please refer to the datasheets available
on our Website.

2.1 What’s in the box

14

https://ouster.com/downloads/
https://ouster.com/downloads/

Note

Interface box is not always shipped with the sensor, based on customer requirement it could be a
pig tail connector cable or a custom cable.

2.2 Sensor Setup

Connect one end of the bayonet-style connector to the Ouster sensor as shown. Verify that the
plug “UP” indicator is pointed up.

Rotate the collet on the plug until one of its two pins is aligned with the major keyway. This will
allow its two pins to enter the receptacle channel.

15

Connect the plug to the sensor, then rotate the collet 180 degrees clockwise until it clicks, this
indicates that it is fully seated. Ensure the red line on the stainless steel connector collet is
aligned with the emblem on the top of the overmold. This alignment confirms that the connector
is properly locked.

Connect one end of the power supply to the wall socket and the other end to the IO box.

Connect one end of the ethernet cable provided to the IO box and the other end to a PC/LINUX/-
MAC user interface.

2.3 Network Configuration

The sensor is designed to communicate with a host machine through a variety of different methods
such as DHCP, IPv6/IPv4 link-local, and static IP.

On most systems you should be able to connect the sensor into your network or directly to a host
machine and simply use the sensor hostname to communicate with it.

Your Ouster sensor requires a computer with a gigabit Ethernet connection and a 24V supply.

Optionally you may time synchronize the sensor through an external time source or through the com-
puter via PTP.

The sensor hostname is os-991234567890.local, where 991234567890 is the sensor serial number. The
sensor serial number can be found on a sticker affixed to the top of the sensor.

For more detailed guidance on communicating with the sensor on various operating systems and net-
work settings please reference the Networking Guide in the Appendix.

Commands for setting and deleting a static IP address can be found in the HTTP API Reference Guide

16

Figure 2.1: Network Configuration and Setup

section.

Note

May be required to configure the firewall to connect with the sensor and access sensor data.

Open Google Chrome/Microsoft Edge/Firefox. Use the hostname in the format of http://
OS-99xxxxxxxxxx.local and click on “Enter/Character turn” to open Ouster Dashboard.

Note

The serial number of the sensor need not start with 99 and is only taken as an example in this
document, the sensor serial number can be found on a sticker affixed to the top of the sensor.

Please keep in mind NOT to use https:// as it will result in an error, use without s as shown
http://OS-99xxxxxxxxxx.local.

17

2.4 Sensor Web Interface

The sensor homepage can be accessed by typing in the sensor’s address (IPv4, IPv6, or hostname)
in a web browser (http://os-991234567890.local/ where 991234567890 is the serial number). From
here you can see information about the sensor, access documentation, and configure sensor settings.

Dashboard: Contains an overview of the sensor.

System Information: This panel provides information regarding the network configuration and
hardware details that are unique to each sensor

Firmware Update: You can update firmware on this panel. See Updating Firmware for more
details.

System Status: This panel displays the status of the sensor and information regarding any Ac-
tive Alerts. More information on the status of the sensor can be found by clicking the link, which
will take the user to the Diagnostics tab.

Configuration: An overview of the sensor configuration is available on this panel. The sensor
configuration can also be edited by clicking on the link below, which will take the user to the
Configuration tab.

Figure 2.2: Ouster Dashboard

18

http://os-991234567890.local/

Diagnostics: Contains diagnostic alert and error information about the sensor for troubleshooting
purposes. For a list of possible alerts and errors, see Alerts and Errors. Some Alerts require the user
to reach out to Ouster support. Please include a copy of the System Diagnostics file which can be
downloaded by clicking the blue tab on this page.

Figure 2.3: Ouster Alerts & Diagnostics

Configuration: This tab contains a user interface to change sensor configuration. If the sensor is in
STANDBY mode, changes to configuration settings will not take effect until we switch the sensor back
to NORMAL mode. Please refer to figure 3.4 for reference.

ResetConfiguration: Resets sensor to factory configurations and settings. Note that this resets
any static IP address given to the sensor.

Persist Active Config: Stores the currently active sensor configuration to persistent storage so
it will be reloaded whenever the sensor starts up.

Apply Config (reinit): Allows the user to configure the sensor settings. This involves a reinitial-
ization of the sensor, so that the sensor configuration settings can take effect.

Documentation: Contains the HTTP and TCP API guides that are compatible with the version of
the firmware on the sensor. Visit Ouster Sensor Documentation for latest hardware and software
user manuals, along with integration guides and troubleshooting guides. Please refer to figure
3.5 for reference.

19

https://static.ouster.dev/sensor-docs/index.html

Figure 2.4: Sensor Configuration

Figure 2.5: Ouster Documentation

20

2.5 Updating Firmware

Sensor firmware can be updated with an Ouster-provided firmware file from Ouster firmware by ac-
cessing the sensor over http - e.g., http://os-991900123456.local/ and uploading the file as prompted.

Note

User can also choose to do this step using an HTTP endpoint. Please refer to POST
/api/v1/system/firmware in HTTP API section.

Figure 2.6: Uploading a new firmware image onto the sensor

Always check the firmware version running on the sensor before attempting to update. Only update
to an equal or higher version number.

After the web UI confirms that the update is complete, please allow the sensor to reboot (about 2
minutes) and refresh your webpage to get access to the updated web UI.

21

https://ouster.com/downloads
http://os-991900123456.local

3 Typical Sensor Operation

Described below is the typical sensor state machine operation. When the sensor is powered ON, the
sensors start in the initialization phase.

Figure 3.1: Sensor Operation Representation

Table 3.1: Sensor Operation Description

Operating State Description

Power On Ouster Lidar turned ON.

Initializing Startup of Ouster Lidar.

Updating Only remains in this state temporarily to update the firmware.

Warm-up If the sensor detects that its environmental temperature is low it will attempt
to self-heat in a warmup state (Cold Start) before entering a normal operating
state.

Running Sensor has completed initialization phase and is now running.

Error Running An error has occurred and the sensor is deciding if it will restart or stop. No
user action required.

Error Stop If an exception is thrown during initialization or running state, the lidar logs
the error and remains in Error until reconfigured or power cycled.

Standby User enabled low power operating mode of the sensor.

Power OFF Ouster Lidar shut off.

22

4 Sensor Data

4.1 Coordinate Frames and XYZ Calculation

Ouster defines two coordinate frames:

The Lidar Coordinate Frame follows the Right Hand Rule convention and is a point cloud-centric
frame of reference that is the simplest frame in which to calculate and manipulate point clouds. The
X-axis points backwards towards the external connector, which is an unintuitive orientation that was
deliberately chosen to meet the following criteria:

Data frames split at the back of the sensor i.e. the external connector

Data frames start with the azimuth angle equal to 0°

All point cloud features including setting an azimuthwindow and phase locking are defined in the Lidar
Coordinate Frame.

The Sensor Coordinate Frame follows the Right Hand Rule convention and is a mechanical housing-
centric frame of reference that follows robotics convention with X-axis pointing forward. Ouster-
provided drivers and visualizers represent data in the Sensor Coordinate Frame.

Note

All Ouster coordinate frames follow the Right Hand Rule, allowing for standard 3D transformation
matrix math to convert between them. For multi-sensor systems that require calibration, this Lin-
ear Algebra-based approach can be convenient. However, customers with single-sensor systems
may find it more intuitive to stay in the Lidar Coordinate Frame and take arithmetic shortcuts.

4.1.1 Lidar Coordinate Frame

The Lidar Coordinate Frame is defined at the intersection of the lidar axis of rotation and the lidar
optical midplane (a plane parallel to Sensor Coordinate Frame XY plane and coincident with the 0°
elevation beam angle of the sensor).

The Lidar Coordinate Frame axes are arranged with:

positive X-axis pointed at encoder angle 0° and the external connector

positive Y-axis pointed towards encoder angle 90°

positive Z-axis pointed towards the top of the sensor

The Lidar Coordinate Frame is marked in both diagrams below with XL, YL, and ZL.

23

Figure 4.1: Top-down view of Lidar Coordinate Frame

4.1.2 Lidar Range to XYZ

Given the following information, range data may be transformed into 3D cartesian XYZ coordinates in
the Lidar Coordinate Frame:

From a measurement block from the UDP packet:

Measurement ID value can be found on the lidar data packet

scan_width value of the horizontal resolution

r or range_mm1 value of the data block of the i-th channel

r' or range_to_beam_origin_mm2

From the GET /api/v1/sensor/metadata/beam_intrinsics HTTP Command:

beam_to_lidar_transform3 value

beam_altitude_angles array

beam_azimuth_angles array
1 r or range_mm is the sum of the magnitudes of vectors of r’ and n. This value is provided for each measurement in blocks

[0-15] of the i-th channel.
2 r' or range_to_beam_origin_mm is the magnitude of the distance vector from lidar front optics to the detected object. This

value is NOT provided; It is only to help illustrate the concept.
3 beam_to_lidar_transform is a translation matrix from the center of the lidar origin coordinate frame to lidar front optics. This

value is provided from the GET /api/v1/sensor/metadata/beam_intrinsics, please refer to the API Guide for more information.

24

The corresponding 3D point can be computed by

r = range_mm

|n⃗| =
√

(beam_to_lidar[0, 3])2 + (beam_to_lidar[2, 3])2

r = |r⃗′|+ |n⃗|

θencoder = 2π ·
(
1− measurement ID

scan_width

)
θazimuth = −2π

beam_azimuth_angles[i]
360

ϕ = 2π
beam_altitude_angles[i]

360

x = (r − |n⃗|) cos (θencoder + θazimuth) cos(ϕ) + (beam_to_lidar[0, 3]) cos (θencoder)
y = (r − |n⃗|) sin (θencoder + θazimuth) cos(ϕ) + (beam_to_lidar[0, 3]) sin (θencoder)
z = (r − |n⃗|) sin(ϕ) + (beam_to_lidar[2, 3])

Figure 4.2: Side view of Lidar Coordinate Frame

25

Figure 4.3: Side view of an OSDome Lidar Coordinate Frame

4.1.3 Sensor Coordinate Frame

The Sensor Coordinate Frame is defined at the center of the sensor housing on the bottom, with the
X-axis pointed forward, Y-axis pointed to the left and Z-axis pointed towards the top of the sensor. The
external connector is located in the negative x direction. The Sensor Coordinate Frame is marked in
the diagram below with XS, YS, ZS.

Figure 4.4: Top-down view of Sensor Coordinate Frame

26

Figure 4.5: Side view of Sensor Coordinate Frame

4.1.4 Combining Lidar and Sensor Coordinate Frame

The Lidar Coordinate Frame’s positive X-axis (0 encoder value) is opposite the Sensor Coordinate
Frame’s positive X-axis to center lidar data about the Sensor Coordinate Frame’s positive X-axis. A
single measurement frame starts at the Lidar Coordinate Frame’s 0° position and ends at the 360°
position. This is convenient when viewing a “range image” of the Ouster Sensor measurements, al-
lowing the “range image” to be centered in the Sensor Coordinate Frame’s positive X-axis, which is
generally forward facing in most robotic systems.

The Ouster Sensor scans in the clockwise direction when viewed from the top, which is a negative
rotational velocity about the Z-axis. Thus, as encoder ticks increase from 0 to 90,111, the actual angle
about the Z-axis in the Lidar Coordinate Frame will decrease.

4.1.5 Lidar Intrinsic Beam Angles

The intrinsic beam angles for each beam may be queried with a HTTP command GET
/api/v1/sensor/metadata/beam_intrinsics to provide an azimuth and elevation adjustment offset to
each beam. The azimuth adjustment is referenced off of the current encoder angle and the elevation
adjustment is referenced from the XY plane in the Sensor and Lidar Coordinate Frames.

4.1.6 Lidar Range Data To Sensor XYZ Coordinate Frame

For applications that require calibration against a precision mount or use the IMU data (Inertial Mea-
surement Unit) in combination with the lidar data, the XYZ points should be adjusted to the Sensor
Coordinate Frame. This requires a Z translation and a rotation of the X,Y,Z points about the Z-axis. The
Z translation is the height of the lidar aperture stop above the sensor origin, which varies depending
on the sensor you have, and the data must be rotated 180° around the Z-axis. This information can be
queried via HTTP in the form of a homogeneous transformation matrix in row-major ordering.

Example JSON formattedquery using theHTTPcommandGET /api/v1/sensor/metadata/lidar_intrinsics:

27

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 38.195, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_lidar_to_sensor =


−1 0 0 0

0 −1 0 0

0 0 1 38.195

0 0 0 1



4.1.7 IMU Data To Sensor XYZ Coordinate Frame

The IMU is slightly offset in the Sensor Coordinate Frame for practical reasons. The IMU origin in
the Sensor Coordinate Frame can be queried over HTTP command in the form of an homogeneous
transformation matrix in row-major ordering.

Example 1- Expected response forHTTPcommandGET /api/v1/sensor/metadata/imu_intrinsicswhen
using Gen1 OS1 (all revisions), Gen2 OS01 (all revisions) and Gen2 OS2 (top-level revisions A, B, C)

{
"imu_to_sensor_transform": [1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 7.645, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_imu_to_sensor =


1 0 0 6.253

0 1 0 −11.775

0 0 1 7.645

0 0 0 1


Example 2- Expected response for HTTP command GET /api/v1/sensor/metadata/imu_intrinsics
when using Gen2 OS2 (top-level revisions D and higher)

{
"imu_to_sensor_transform": [1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 11.645, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_imu_to_sensor =


1 0 0 6.253

0 1 0 −11.775

0 0 1 11.645

0 0 0 1



28

5 Lidar Data Packet Format

Note

For all users transitioning from firmware version 3.0 to 3.1, please note that LEGACY profile has been
deprecated andwill not be available for use in a future firmware release. Please refer to the current
default profile on the sensor i.e.., RNG19_RFL8_SIG16_NIR16 Return Profile.

With firmware version v3.1 and above, users will have the option to switch between different lidar data
packet formats as shown below.

Configurable Data Packet Format

RNG19_RFL8_SIG16_NIR16 Return Profile (Default)

RNG15_RFL8_NIR8 Return Profile

RNG19_RFL8_SIG16_NIR16_DUAL Return Profile

FUSA_RNG15_RFL8_NIR8_DUAL Return Profile

LEGACY Data Packet Format (Deprecated - Not Available starting FW v3.1)

By default, the data packet format will be set to RNG19_RFL8_SIG16_NIR16 Return Profile for
Firmware v3.0 and later.

Dual Returns

The dual return feature allows the sensor to output up to 2 lidar returns, enabling better performance in
scenarios with semi-transparent obscurants, such as rain, fog, or chain-link fences. In these scenarios,
the strongest and second strongest returns are required to see both the semi-transparent object, as
well as whatever may lie behind it.

Return Order

The following return_order can be set STRONGEST_TO_WEAKEST (Default), NEAREST_TO_FARTHEST and FAR-
THEST_TO_NEAREST.

When a DUALUDP profile is selected, the sensor returns the two strongest returns for each radial beam.
The order in which these two returns appear depends on the setting of the return order which has the
following possible values.

STRONGEST_TO_WEAKEST: The strongest of the two returns is the first return and the next strongest
(or the weakest of these two returns) follows. This return order prioritizes the points based on
their signal strength, with the strongest signals coming first. This can be useful in applications
where identifying the most prominent or reflective objects is crucial.

29

FARTHEST_TO_NEAREST: The farthest of the two returns is the first return and the next strongest and
therefore nearest of the two strongest returns follows. This return order organizes the points
based on their distance from the lidar sensor, with the farthest points listed first. It is valuable
when the focus is on understanding the spatial distribution of objects in the sensor’s field of view.

NEAREST_TO_FARTHEST: The nearest of the two strongest returns is the first return and the farthest
of the two strongest returns follows. This return order prioritizes the closest point, listing it
first. This order can be beneficial in applications where identifying nearby obstacles or points
of interest is critical.

The choice of return_order depends on the application. For example, in obstacle detection scenarios,
NEAREST_TO_FARTHEST might be preferred for identifying nearby objects, whilst in mapping applications
FARTHEST_TO_NEAREST could be more suitable for capturing the spatial layout of the environment.

5.1 Configurable Data Packet Format

Different options for udp_profile_lidarmaintain a uniform packet structure, which is described in de-
tail below.

5.1.1 Lidar Data Format

Each data packet consists of Packet Header, Measurement Header, Channel Data Blocks and Packet Footer.
The packet rate is dependent on the lidar mode. Words are 32 bits in length and little endian.

By default, lidar UDP data is forwarded to Port 7502. Please refer to the HTTP API Reference Guide
section of this manual for more information on setting this parameter. Alternately, this mode can also
be configured via the Web Interface.

Packet layout

Packet Header [256 bits]

Packet type [16 bit unsigned int] - Identifies lidar data vs. other packets in stream. Packet Type
is 0x1 for Lidar packets.

Frame ID [16 bit unsigned int] - Index of the lidar scan, increments every time the sensor com-
pletes a rotation, crossing the zero azimuth angle.

Init ID [24 bit unsigned int] - Initialization ID. Updates on every reinitialization, which may be
triggered by the user or an error, and every reboot. This value may also be obtained by running
the HTTP command GET /api/v1/sensor/metadata/sensor_info.

Serial No [40 bit unsigned int] - Serial number of the sensor. This value is unique to each
sensor and can be found on a sticker affixed to the top of the sensor. In addition, this in-
formation is also available on the Sensor Web UI and by reading the field prod_sn from GET
/api/v1/sensor/metadata/sensor_info.

30

Shot limiting status [4 bit unsigned int] - Indicates the shot limiting status of the sensor. Differ-
ent codes indicates whether the sensor is in Normal Operation or in Shot Limiting. Please refer
to Shot Limiting section for more details.

ShutdownStatus [4 bit unsigned int] - Indicates whether thermal shutdown is imminent. Please
refer to Shot Limiting section for more details.

Shot limiting Countdown [8 bit unsigned int] - Countdown from 30s to indicate when shot lim-
iting is imminent. Please refer to Shot Limiting section for more details.

ShutdownCountdown [8 bit unsigned int] - Countdown from 30s to indicate that thermal shut-
down is imminent. Please refer to Shot Limiting section for more details.

Alert Flags [8 bit unsigned int]:

bit [0-5]: alert_cursors (Increments sequentially every time a new alert is active or an
alert is cleared. At this time users can query GET /api/v1/sensor/alerts to understand
which alert was activated or cleared).

bit [6]: cursor_overflow (true if cursor overflows, cleared when GET
/api/v1/sensor/alerts is read. cursor_overflow turns on whenever alert_cursors
goes from 63->0, and stays on until the next time GET /api/v1/sensor/alerts is called).

bit [7]: alerts_active (true if ANY alerts are active).

Column Header Block [96 bits]

Timestamp [64 bit unsigned int] - Timestamp of the measurement in nanoseconds.

Measurement ID [16 bit unsigned int] - Sequentially incrementing measurement counting up
from 0 to 511, or 0 to 1023, or 0 to 2047 depending on lidar_mode.

Status [1 bit unsigned int] - Indicates validity of the measurements. Status is 0x01 for valid
measurements. Status is 0x00 for dropped or disabled columns.

Channel Data Blocks [Varies based on channel data profile]

The size and the structure of the channel data block varies based on the configurable data packet
format chosen by the user. More information on each of these options are described below in
the following sections.

Packet Footer [256 bits]

Reserved [192 bits]

E2E CRC [64 bits] - This covers the end to end cyclic redundancy check (CRC) on the entire
data packet. For more details refer to E2E CRC64 calculation parameters.

31

Figure 5.1: Configurable Data Packet Configuration

32

E2E CRC64 calculation parameters

The CRC64 is calculated on the received UDP lidar packet payload bytes, in the same received bit
order, without the encoded CRC64 value [I.E. excluding the last 64 bits of the received lidar packet],
and by using the following CRC algorithm calculation parameters:

Table 5.1: E2E CRC Calculation

CRC Result Width 64 bits

Polynomial 0x42f0e1eba9ea3693

Initial Value 0xffffffffffffffff

Input data reflected Yes

Result data reflected Yes

XOR Value 0xffffffffffffffff

Since the value of the CRC64 in the received lidar packet is encoded as a Little-Endian hex value; you
will have to reverse the CRC64 bytes (last 8 bytes of the lidar packet) before comparing them with
the hex value of the calculated CRC64 that is based on the received lidar packet bytes.

5.1.2 Channel Data Profiles

This section describes the different channel data profile options that are available to the users as part
of the configurable data packet format. Each of these data profiles can be selected by setting the
configuration parameter udp_profile_lidar to one of the following options:

RNG19_RFL8_SIG16_NIR16 Return Profile (Default)

RNG15_RFL8_NIR8 Return Profile

RNG19_RFL8_SIG16_NIR16_DUAL Return Profile

More details on how to set the configuration parameters are described in the HTTP API Reference
Guide portion of this Firmware User Manual.

Note

Calibrated reflectivity has certain hardware requirements. Please refer to the Calibrated Reflectiv-
ity section for more details.

33

Table 5.2: Configurable Data Packet Profiles

Descrip-
tion

RNG19_RFL8_SIG16_NIR16
Return Profile

RNG15_RFL8_NIR8
Return Profile

RNG19_RFL8_SIG16_NIR16_DUAL
Return Profile

Profiles RNG19_RFL8_SIG16_NIR16 RNG15_RFL8_NIR8 RNG19_RFL8_SIG16_NIR16_DUAL

Words per
pixel

3 1 4

Range
RET1

19 bits 15 bits 19 bits

Reflectiv-
ity RET1

8 bits 8 bits 8 bits

Range
RET2

Not Available Not Available 19 bits

Reflectiv-
ity RET2

Not Available Not Available 8 bits

Signal
RET1

16 bits Not Available 16 bits

Signal
RET2

Not Available Not Available 16 bits

NIR 16 bits 8 bits 16 bits

34

5.1.3 RNG19_RFL8_SIG16_NIR16 Return Profile

The data packet format for all sensors by default is set to RNG19_RFL8_SIG16_NIR16 i.e., Single Return
Profile. This channel data profile can also be activated from a different setting by changing the con-
figuration parameter udp_profile_lidar to RNG19_RFL8_SIG16_NIR16.

This channel data profile is identical to the channel data block present in previously available LEGACY
format (Deprecated), but makes use of the configurable data packet format. Users looking to take
advantage of the configurable data packet format can use this profile in place of LEGACY. The channel
data profile for this is described below.

Channel Data Blocks [96 bits each for RNG19_RFL8_SIG16_NIR16 profile]

For RNG19_RFL8_SIG16_NIR16 profile the channel data block consists of 3 words to accommodate
data for porting over the LEGACY profile (Deprecated) to configurable Data Packet format. Only a single
return will be made available to the user.

Range [19 bit unsigned int] - Range in millimeters, discretized to the nearest 1 millimeters with a
maximum range of 524m. Note that range value will be set to 0 if out of range or if no detection
is made.

Calibrated Reflectivity [8 bit unsigned int] - Sensor Signal Photons measurements are scaled
based on measured range and sensor sensitivity at that range, providing an indication of target
reflectivity.

Signal Photons [16 bit unsigned int] - Signal intensity photons in the signal returnmeasurement
are reported.

Near Infrared Photons [16 bit unsigned int] - NIR photons related to natural environmental illu-
mination are reported.

35

Figure 5.2: Single Return Configuration

36

5.1.4 RNG15_RFL8_NIR8 Return Profile

This channel data profile can be activated by setting the configuration parameter udp_profile_lidar
to RNG15_RFL8_NIR8.

This channel data profile is especially useful to users who are looking to adopt a channel data profile
to fit with limited compute capabilities. The data rate and data packet size when using this profile is
smaller compared to the other channel data profile options that are available.

The channel data profile for this is described below.

Channel Data Blocks [32 bits each for RNG15_RFL8_NIR8 profile]

For the RNG15_RFL8_NIR8 profile the channel data block consists of only 1 word to accommodate
data for optimizing information at a low data rate. Only a single return is made available to the user.

Range [15 bit unsigned int] - Range scaled down by a factor of 8 mm, for a maximum range of
(2^15*8) = 262m in 15 bits. Note The range value will be set to 0 if out of range or if no detection
is made.

Calibrated Reflectivity [8 bit unsigned int] - Sensor Signal Photons measurements are scaled
based on measured range and sensor sensitivity at that range, providing an indication of target
reflectivity.

Near InfraredPhotons [8 bit unsigned int] - NIR photons related to natural environmental illumi-
nation are reported. Measurements are taken similar to other data profiles (Single Data Profile
and Dual Return Profile) but it is scaled down by a factor of 16.

37

Figure 5.3: Low Data Rate Configuration

38

5.1.5 RNG19_RFL8_SIG16_NIR16_DUAL Return Profile

This channel data profile can be activated by setting the configuration parameter udp_profile_lidar
to RNG19_RFL8_SIG16_NIR16_DUAL.

Channel Data Blocks [128 bits each for RNG19_RFL8_SIG16_NIR16_DUAL profile]

For RNG19_RFL8_SIG16_NIR16_DUAL profile the channel data block consists of 4 words to accom-
modate data for two lidar returns.

RangeRET1/2 [19 bit unsigned int] - range inmillimeters, discretized to the nearest 1millimeters
with a maximum range of 524m. Note that range value will be set to 0 if out of range or if no
detection is made.

Calibrated Reflectivity RET1/2 [8 bit unsigned int] - Sensor Signal Photons measurements are
scaled based on measured range and sensor sensitivity at that range, providing an indication of
target reflectivity.

Signal Photons RET1/2 [16 bit unsigned int] - Signal intensity photons in the signal return mea-
surement are reported.

Near Infrared Photons [16 bit unsigned int] - NIR photons related to natural environmental illu-
mination are reported.

39

Figure 5.4: Dual Return Data Packet Configuration

40

5.2 FUSA_RNG15_RFL8_NIR8_DUAL Return Profile

Setting udp_profile_lidar to value FUSA_RNG15_RFL8_NIR8_DUAL activates the Functional Safety data
packet format. This packet format will be expanded periodically with every firmware release to report
flags, error checking mechanisms, and alerts necessary for a functionally safe system. This packet
format has a different header and footer structure.

Note

Rev7 sensor with FW v3.1 is a minimum requirement to use this lidar packet format. This profile
is expanded periodically and it does not mean that the sensor is actually FUSA certified.

5.2.1 Lidar Data Format

When udp_profile_lidar is set to FUSA_RNG15_RFL8_NIR8_DUAL, each data packet consists of Packet Header,
Measurement Header, Channel Data Blocks and Packet Footer. The packet rate is dependent on the lidar
mode. Words are 32 bits in length and little endian. By default, lidar UDP data is forwarded to Port
7502. Please refer to HTTP API Reference Guide section of this manual for more information on con-
figuring this parameter. Alternatively this mode can also be configured via the web interface.

"udp_profile_lidar=FUSA_RNG15_RFL8_NIR8_DUAL"

This profile is meant to allow the sensor to provide an output up to 2 returns at a low data rate. Refer
to Return Order for more information.

Packet layout

For FUSA_RNG15_RFL8_NIR8_DUAL profile the channel data block consists of 64 bits to accommodate data
for the multiple returns. A total of up to two returns will be made available to the user.

Packet Header [256 bits]

Packet type [8 bit unsigned int] - Identifies lidar data vs. other packets in stream. Packet Type
is 0x1 for Lidar packets.

Init ID [24 bit unsigned int] - Initialization ID. Updates on every reinitialization, which may be
triggered by the user or an error, and every reboot. This value may also be obtained by running
the HTTP command GET /api/v1/sensor/metadata/sensor_info.

Frame ID [32 bit unsigned int] - Index of the lidar scan, increments every time the sensor com-
pletes a rotation, crossing the zero azimuth angle.

Serial No [40 bit unsigned int] - Serial number of the sensor. This value is unique to each
sensor and can be found on a sticker affixed to the top of the sensor. In addition, this in-
formation is also available on the Sensor Web UI and by reading the field prod_sn from GET
/api/v1/sensor/metadata/sensor_info.

41

Alert Flags [8 bit unsigned int]:

bit [0-5]: alert_cursors (Increments sequentially everytime a new alert is active. At this time
users can query GET /api/v1/sensor/alerts to understand which alert was activated).

bit [6]: cursor_overflow (true if cursor overflows, cleared when GET /api/v1/sensor/alerts is
read. cursor_overflow turns on whenever alert_cursors goes from 63->0, and stays on until
the next time GET /api/v1/sensor/alerts is called).

bit [7]: alerts_active (true if ANY alerts are active).

ShutdownCountdown [8 bit unsigned int] - Countdown from 30s to indicate that thermal shut-
down is imminent. Please refer to Shot Limiting section for more details.

Shot limiting Countdown [8 bit unsigned int] - Countdown from 30s to indicate when shot lim-
iting is imminent. Please refer to Shot Limiting section for more details.

ShutdownStatus [4 bit unsigned int] - Indicates whether thermal shutdown is imminent. Please
refer to Shot Limiting section for more details.

Shot limiting status [4 bit unsigned int] - Indicates the shot limiting status of the sensor. Dif-
ferent codes indicate whether the sensor is in Normal Operation or in Shot Limiting. Please refer
to Shot Limiting section for more details.

Column Header Block [96 bits]

Timestamp [64 bit unsigned int] - Timestamp of the measurement in nanoseconds.

Measurement ID [16 bit unsigned int] - Sequentially incrementing measurement counting up
from 0 to 511, or 0 to 1023, or 0 to 2047 depending on lidar_mode.

Status [1 bit unsigned int] - Indicates validity of the measurements. Status is 0x01 for valid
measurements. Status is 0x00 for dropped or disabled columns.

Channel Data Blocks [64 bits]

Range RET1/2 [15 bit unsigned int] - Range scaled down by a factor of 8 mm, for a maximum
range of (2^15*8) = 262 mm in 15 bits.

Calibrated Reflectivity RET1/2 [8 bit unsigned int] - Sensor Signal Photons measurements are
scaled based on measured range and sensor sensitivity at that range, providing an indication of
target reflectivity.

Near InfraredPhotons [8 bit unsigned int] - NIR photons related to natural environmental illumi-
nation are reported. Measurements are taken similar to other data profiles (Single Data Profile
and Dual Return Profile) but it is scaled down by a factor of 16.

Packet Footer [256 bits]

42

Figure 5.5: Functional Safety Data Packet Format

43

5.2.2 Packet Size Calculation

Packet size can be calculated by the following formula:

packet_header_size + columns_per_packet * (measurement_header_size + pixels_per_column * chan-
nel_data_block_size) + packet_footer_size

For example:

32 + 16 * (12 + n * s) + 32 bytes

packet_header_size = 32 bytes

columns_per_packet = 16

measurement_header_size = 12 bytes

n is pixels_per_column (correspond to the number of channels: 128 for OS1-128)

s is the size of a channel data block (16 bytes for RNG19_RFL8_SIG16_NIR16_DUAL config-
uration)

packet_footer_size = 32 bytes

The following tables below provide values for packet sizes, packet rates, and data rates for various
products and configurations. These tables assume a default azimuth window of 360°. Providing a
custom azimuth window can further lower packet rate and data rate. See the AzimuthWindow section
for details on setting a custom azimuth window.

Table 5.3: Lidar Packet Size (Bytes) Breakdown, Product vs Data Packet Format

Product Single Return Dual Return Low Data Rate FUSA Low Data Rate Dual Return

OS-x-32 6400 8448 2304 4352

OS-x-64 12544 16640 4352 8448

OS-x-128 24832 33024 8448 16640

Table 5.4: Packet Rate (Hz) Breakdown, Product vs Lidar Mode

Product 512x10 1024x10,
512x20

2048x10,
1024x20

OS-x-32 320 640 1280

OS-x-64 320 640 1280

OS-x-128 320 640 1280

44

Table 5.5: Data Rate (Mbps) Breakdown in 2048x10 or 1024x20modes, Product vsData Packet Format

Product Single Return Dual Return Low Data Rate FUSA Low Data Rate Dual Return

OS-x-32 65.57 86.55 23.63 44.56

OS-x-64 128.49 170.43 44.60 86.55

OS-x-128 254.32 338.20 86.55 170.4

5.3 LEGACY Data Packet Format

Warning

``LEGACY Data Packet Format is Deprecated``.

Please refer to RNG19_RFL8_SIG16_NIR16 Return Profile section which will be the default lidar
packet format with firmware v3.0.0 and later. Formore information on LEGACY packet format, please
visit Downloads and refer to Firmware User Manual v3.0 or prior. For any questions on how to tran-
sition from ‘’LEGACY`` profile to RNG19_RFL8_SIG16_NIR16 Return Profile profile, please contact
our Field Application Team.

5.4 Calibrated Reflectivity

The calibration status is returned with the following format:

{
"reflectivity":
{

"valid": "true: if factory calibrated for better accuracy, false: if not calibrated -- using default
values and likely has less accuracy",

"timestamp": "Date when the calibration has been performed"
}

}

Please contact your support@ouster.io if you have questions on whether your sensor is hardware-
enabled for calibrated reflectivity.

45

https://ouster.com/downloads/
https://ouster.atlassian.net/servicedesk/customer/portal/8
mailto:support@ouster.io

5.4.1 Reflectivity Data Mapping

Reflectivity values between 0-100 are linearly mapped for lambertian targets with values between 0%
and 100% reflectivity. Values between 101-255 are mapped as log 2 with linear interpolation between
logarithmic points for retroreflective targets. The 255 value corresponds to a retroreflector 864 times
stronger than a 100% lambertian target. The charts below show the mapping functions.

Figure 5.6: % Reflectivity vs Representation

Figure 5.7: % Reflectivity vs Representation (Log Scale)

46

47

5.5 IMU Data Format

IMU UDP Packets are 48 Bytes long and by default are sent to Port 7503 at 100 Hz. Data is organized
in little endian format.

Note

IMU data format is the same regardless of the lidar data profile selected by the user.

Each IMU data block contains:

IMU Diagnostic Time [64 bit unsigned int] - timestamp of monotonic system time since boot in
nanoseconds.

Accelerometer Read Time [64 bit unsigned int] - timestamp for accelerometer time relative to
timestamp_mode in nanoseconds.

Gyroscope Read Time [64 bit unsigned int] - timestamp for gyroscope time relative to times-
tamp_mode in nanoseconds.

Acceleration in X-axis [32 bit float] - acceleration in g.

Acceleration in Y-axis [32 bit float] - acceleration in g.

Acceleration in Z-axis [32 bit float] - acceleration in g.

Angular Velocity about X-axis [32 bit float] - Angular velocity in deg per sec.

Angular Velocity about Y-axis [32 bit float] - Angular velocity in deg per sec.

Angular Velocity about Z-axis [32 bit float] - Angular velocity in deg per sec.

Note that the first timestamp (Words 0,1) is for diagnostics only and is rarely used under normal op-
eration.

The second two timestamps, (Words 2,3) and (Words 4,5), are sampled on the same clock as the lidar
data, so should be used for most applications.

Ouster provides timestamps for both the gyro and accelerometer in order to give access to the lowest
level information. In most applications it is acceptable to use the average of the two timestamps.

Table 5.6: Data Rate - IMU Data Packet

Product IMU packet size (Bytes) IMU packets per second

OS1-16 48 100

OS0-32, OS1-32, OS2-32 48 100

OS0-64, OS1-64, OS2-64 48 100

OS0-128, OS1-128, OS2-128 48 100

48

Figure 5.8: IMU Packet Format

5.5.1 Configurable IMU Scale

Users now have the capability to access the Full Scale Range (fsr) of the IMU integrated within Ouster
sensors. This feature empowers users to adjust the scale of both Accelerometer and Gyroscope mea-
surements captured by the IMU. Scale modifications can be toggled between a default setting termed
NORMAL and an enhanced setting labeled EXTENDED. Users have the flexibility to alter the scale of the gy-
roscope and accelerometer either through GET /api/v1/sensor/metadata/imu_data_format or via the
Web UI.

accel_fsr - This configuration parameter facilitates adjustment of the accelerometer scale. It offers
two settings:

NORMAL (Default): Digital-output X-, Y-, Z-axis with a full-scale range fixed at ± 2g.

EXTENDED: Digital-output X-, Y-, Z-axis with an expanded full-scale range of ± 16g.

gyro_fsr - This configuration parameter enables modification of the gyroscope scale. It provides two
settings:

NORMAL (Default): Digital-output X-, Y-, Z-axis with a full-scale range fixed at ± 250 dps (°/sec).

EXTENDED: Digital-output X-, Y-, Z-axis with a programmable full-scale range of ± 2000 dps (°/sec).

Note

When the scale of the IMU is altered, the measured values within the IMU packets will also be

49

updated accordingly. However, switching to the ‘EXTENDED’ scale may result in a slight loss of
precision due to the truncation of the least significant bits (LSB). IMU specifications can be found
in the Sensor Datasheet.

6 Feature Guides

6.1 Cold Start

There is software-enabled capability for the Ouster sensor to power-up from lower temperatures. If
the sensor detects that its environmental temperature is low, it will attempt to self-heat in a warmup
state before entering a normal operating state.

6.1.1 Hardware Requirements

All Rev 7 sensors have cold startup capability.

6.1.2 Cold Start Operation

There is nothing for the user to change about the sensor configuration to use this feature. The sensor
will automatically begin its warmup process in the coldest parts of its operating temperature range.

Table 6.1: Cold Start

Product Line Min Temp Specs

OS0
-40°C min operating temp
8 mins to SENSOR_RUNNING
12 mins to lasers at temp (full range)
28W peak power

OS1
-40°C min operating temp
8 mins to SENSOR_RUNNING
12 mins to lasers at temp (full range)
28W peak power

OS2
-20°C min operating temp
15 mins to SENSOR_RUNNING
15 mins to lasers at temp (full range)
30W peak power

50

https://ouster.com/downloads

6.1.3 Indications and Alerts

In a cold start scenario, the sensor will have a short warmup phase; we’ve added in the additional
"WARMUP" status to indicate when the sensor is warming up.

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 274
Content-Type: application/json
Date: Thu, 01 Jan 1970 00:02:59 GMT
Server: nginx

{
"build_date": "2023-1-15T15:56:07Z",
"build_rev": "v3.0,0",
"image_rev": "ousteros-image-prod-bootes-v3.0.0+0123456789",
"initialization_id": 2573178,
"prod_line": "OS-1-128",
"prod_pn": "840-103xxx-0x",
"prod_sn": "99xxxxxxxxxx",
"status": "WARMUP"

}

The following alerts are related to cold start:

Table 6.2: Cold Start Alerts

ID Category Level Description

0x01000053 WARMUP_ISSUE ERROR Sensor warmup process has failed. Unit
is shutting down. Check the sensor op-
erating conditions are within operating
bounds. Contact Ouster support with Di-
agnostic file.

0x0100004F WARMUP_ISSUE WARNING Sensor warmup process is taking longer
than expected; please ensure sensor is
thermally constrained per requirements.
Contact Ouster support with Diagnostic
file.

6.2 Sensor Telemetry

Sensor telemetry refers to sensor system state information that changes with time, i.e. temperature,
voltage, etc. Users can monitor this data live or for diagnostics and take precautionary measures if
needed. This information can be obtained from running the command GET /api/v1/sensor/telemetry
as shown in the example below.

51

https://ouster.com/tech-support
https://ouster.com/tech-support

6.2.1 GET /api/v1/sensor/telemetry

To GET the sensor telemetry information.

GET /api/v1/sensor/telemetry HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 151
Content-Type: application/json
Date: Thu, 21 Mar 2024 05:26:49 GMT
Server: nginx

{
"input_current_ma": 198,
"input_voltage_mv": 24033,
"internal_temperature_deg_c": 36,
"phase_lock_status": "DISABLED",
"timestamp_ns": 19510164553064

}

Table 6.3: Example Sensor Telemetry

Fields Notes

Timestamp Timestamp from the FPGA measured in ns (Nanoseconds)

Lidar Input Voltage Input voltage mv (Millivolt) that is provided to the sensor

Lidar Input Current Input current ma (Milliamp) that is provided to the sensor

Internal Tempera-
ture

Internal base board temperature ºC (Degree Celsius).

Phase Lock Status Different codes to specify phase lock status and issues related to phase lock-
ing (LOCKED, LOST, DISABLED)

Note

Phase lock output will not indicate loss of lock if the PTP source is lost.

52

6.3 Azimuth Window

Azimuth window selection is a feature to only turn on the UDP lidar data within a region of interest.
The region of interest is defined by a min bound and a max bound, both in millidegrees. As a reminder,
angles in this frame increment counterclockwise when viewed from the top. Below is the Lidar Coor-
dinate Frame from a top-down perspective:

0° towards the external connectors

90° a quarter turn counterclockwise from the connector

180° opposite the connector

270° three quarter turns counterclockwise from the connector

Figure 6.1: Lidar Coordinate Frame from a top-down perspective

Configuring the azimuth window lowers the average output data rate of the sensor. It also stops the
lasers from firing during disabled regions and thus reduces power consumption and thermal output.

6.3.1 Expected Sensor Behavior

The sensor will round the input azimuth window bounds to the nearest Measurement Block IDs gen-
erating new ID-based bounds. The new bounds are used to mask Measurement Blocks in the lidar
data packets. Lidar packets containing only masked Measurement Blocks are not output, and there
may be partially maskedMeasurement Blocks in the two bookended lidar packets in each frame. The
Measurement Block Status field will indicate the valid or masked/paddedMeasurement Blocks in any
partially masked lidar packets. (See the Lidar Data Packet Format section for details on the lidar data
format.)

53

The visualized output will contain jagged edges caused by the staggered, nonzero nature of the beam
azimuth angles. It is necessary to set more conservative (wider) bounds to push the jagged edges
beyond the desired window. This can be determined through trial and error or calculated determinis-
tically with knowledge of the queryable beam azimuth angles.

6.3.2 Azimuth Laser Masking

This feature allows thermal improvement by shutting down the Lasers on themasked azimuthwindow.
Lasers are only shot in the azimuth window the user has configured. When the user configures a
limited azimuthwindow (azimuth_windowconfig param) on the sensor for their application, the sensor
will automatically shut down the lasers in the unused azimuth window.

6.3.3 Azimuth Window Examples

The HTTP API Guide lists the command for setting an azimuth window. Please refer to section az-
imuth_window.

The command syntax is as follows:

"azimuth_window": [min_bound_millidegrees, max_bound_millidegrees]

Default settings of 360° window: [0, 360000]

Set a region of interest between 0° to 180°: [0, 180000]

Set a region of interest between 270° to 90° with 180° field of view: [270000, 90000]

Set a region of interest 90° to 270° with 180° field of view: [90000, 270000]

Set a region of interest between 0° to 90° with 90° field of view: [0, 90000]

Set a region of interest 90° to 360° with 270° field of view: [90000, 0]

6.4 Standby Operating Mode

Starting with firmware v2.0.0, the sensor can be commanded in and out of a low-power Standby Op-
erating Mode that can be useful for power, battery, or thermal-conscious applications of the sensor.

The HTTP config param operating_mode has a default value of NORMAL. Setting it to STANDBY puts the
sensor into Standby Operating Mode upon reinitialization.

54

6.4.1 Expected Sensor Behavior

Power draw in Standby mode is 5W. The motor does not spin, and light is not visible from the window.
However, the sensor is on and listening to commands. The sensor status will be STANDBY.

6.4.2 Standby Operating Mode Examples

Set sensor into STANDBY mode and keep sensor in STANDBY mode upon power-up at next use:

curl -i -X POST os-122322000614.local/api/v1/sensor/config -H 'content-type: application/json' --data-raw
'{"operating_mode": "STANDBY"}'

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Content-Type: application/json

{"operating_mode": "STANDBY"}

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:37:41 GMT
Server: nginx

Set sensor into NORMAL mode and keep sensor in NORMAL mode upon power-up at next use:

curl -i -X POST os-122322000614.local/api/v1/sensor/config -H 'content-type: application/json' --data-raw
'{"operating_mode": "NORMAL"}'

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Content-Type: application/json

{"operating_mode": "NORMAL"}

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:37:41 GMT
Server: nginx

6.5 Signal Multiplier

The signal_multiplier config parameter allows the user to set amultiplier for the signal strength of the
sensor. By default the sensor has a signal multiplier value of 1. Choosing a signal multiplier greater
than 1 requires reducing the azimuth window below 360˚ as explained below. Lasers are disabled
outside of the maximum allowable azimuth window.

55

6.5.1 Use Cases

The config parameter signal_multiplier <0.25/0.5/1/2/3> sets the signal multiplier value. The higher
the signal multiplier value, the smaller the maximum azimuth window can be.

Table 6.4: Maximum azimuth window size at each signal multiplier level

Signal Multiplier Value Max Azimuth Window

0.25 360°

0.5 360°

1 (Default) 360°

2 180°

3 120°

Besides affecting the sensor’s signal strength, the signal multiplier choice can also impact power draw
and thermal behavior. Choosing a signal multiplier less than 1 reduces overall power. Similarly, choos-
ing a smaller azimuth window means the lasers do not emit pulses in sections not included in the
azimuth window, thus reducing overall power. However, while this can increase the max operating
temp of the sensor, it can also degrade the performance at low temperatures. This discrepancy will
be resolved in a future firmware. The table below outlines some example use cases. User can access
Sensor Telemetry information and monitor the sensor temperature.

Table 6.5: Example Use Cases

Use Case Parameter
signal_multiplier

Parameter
azimuth_window

Signal boost 3 [0,120000]

Signal boost with power draw reduction 2 [0,90000]

6.5.2 Expected Behavior

For all signal multiplier levels, the lasers are enabled only in the chosen azimuth window.

If an invalid combination of signal multiplier and azimuth window values are set, the sensor will throw
an error. If a valid pair of values are set, upon reinitializing, the sensor will operate in the signal multi-
plier mode.

Examples

The following shows the HTTP API example commands and responses.

Set sensor in 3x signal multiplier mode with 120° HFoV:

First set the azimuth_window to [120000, 240000] using azimuth_window. Then the user can run a

56

POST command to set signal multiplier to a value 3.

curl -i -X POST 192.0.2.123/api/v1/sensor/config -H 'content-type: application/json' --data
'{"signal_multiplier": "3"}'

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json

{"signal_multiplier": "3"}

HTTP/1.1 204 No Content
Server: nginx
Date: Mon, 04 Mar 2024 19:50:36 GMT
Connection: keep-alive

Sensor will throw an error if invalid parameters set are of any value other than 0.25, 0.5, 1, 2, 3.

Note

Please refer to theMaximum azimuth window size at each signal multiplier level before configuring
a signal multiplier value.

6.6 Sensor Performance by Operating Configuration

Depending upon the sensor’s lidar mode and signal multiplier setting, the sensor performance will
vary from its baseline as listed on the datasheet. This section will present the estimated performance
multiplier depending on the sensor and the operating configuration.

6.6.1 Estimated range multiplier

When using a signal multiplier higher than 1x and depending on the lidar mode, the sensor will get a
range increase. The following tables present an estimated rangemultiplier depending on the operating
configuration.

For the OS0, OSDome and OS1 sensors the baseline is the 1024x10 mode.

Table 6.6: Frame Rate / Horizontal Resolution 512 Mode

Signal Multiplier 0.25x 0.5x 1x 2x 3x

10 Hz 0.84 1 1.19 1.41 1.57

20 Hz 0.71 0.84 1 1.19 1.32

57

Table 6.7: Frame Rate / Horizontal Resolution 1024 Mode

Signal Multiplier 0.25x 0.5x 1x 2x 3x

10 Hz 0.71 0.84 1 1.19 1.32

20 Hz 0.59 0.71 0.84 1 1.11

Table 6.8: Frame Rate / Horizontal Resolution 2048 Mode

Signal Multiplier 0.25x 0.5x 1x 2x 3x

10 Hz 0.59 0.71 0.84 1 1.11

20 Hz NA NA NA NA NA

Note

The values in the tables above are given for guidance only. The only specs guaranteed are the ones
defined in the datasheet for a specific mode.

For Rev7 OS2 sensors the baseline is the 2048x10 mode.

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 1.41 1.68 1.86 1.19 1.41 1.57 1.00 1.19 1.32

20 Hz 1.19 1.41 1.57 1.00 1.19 1.32 NA

Note

The values in the tables above are given for guidance only. The only specs guaranteed are the ones
defined in the datasheet for a specific mode.

58

6.6.2 Maximal representable range

Depending upon the signal multiplier, the maximal representable range of the sensor will be different.
The table below shows the maximal representable range values for each sensor type and multiplier
value.

Table 6.9: Maximum Representation Range Rev7 Sensors

Signal
Multiplier

OSDome
(FW 3.x)

OS0
(FW 3.x)

OS1
(FW 3.x)

0.25x, 0.5x, 1x 233 m (Typical)
207 m (min)

233 m (Typical)
207 m (min)

233 m (Typical)
207 m (min)

2x 116 m (Typical)
103 m (min)

116 m (Typical)
103 m (min)

116 m (Typical)
103 m (min)

3x 77 m (Typical)
69 m (min)

77 m (Typical)
69 m (min)

77 m (Typical)
69 m (min)

Table 6.10: Maximum Representation Range For Rev6/Rev7 OS2 (FW v2.5.x)

Signal
Multiplier

OS2
(FW 2.5.x)

0.25x, 0.5x, 1x 404 m (Typical)
381 m (min)

2x 202 m (Typical)
190 m (min)

3x 134 m (Typical)
127 m (min)

Note

Range returns beyond the maximal representable rangemay experience range aliasing. Therefore,
these modes are only recommended in scenarios where there will not be any returns beyond the
maximal representable range.

59

6.7 Shot Limiting

Shot limiting is a process by which the Ouster sensor will automatically enter into state to safely pro-
long the operational performance of the sensor in high operating temperature conditions. There are
several different levels of shot limiting that are described in the Shot Limiting Status Flags table.

The sensor has three operating states in order to manage high temperatures:

NORMAL (Status 0x00)

SHOT_LIMITING_IMMINENT (Status 0x01)

SHOT_LIMITING (Status 0x02 and greater)

In the NORMAL state the sensor will perform to the range and precision specifications of the datasheet.
When the sensor reaches a certain temperature, the sensor enters the SHOT_LIMITING_IMMINENT state
and issues alert 0x0100000E which indicates shot-limiting will commence in 30 seconds. After 30 sec-
onds have elapsed and the temperature remains elevated, the sensor issues alert 0x0100000F and en-
ters a SHOT_LIMITING state.

In shot limiting state, the sensor reduces power to the lasers in order to reduce the thermal load. While
in this state, sensor range and precision may degrade by up to 30%. The sensor will progressively
increase shot limiting if the temperature remains elevated. If the sensor reaches its maximum degree
of shot-limiting, it will throw alert 0x0100003A.

If the sensor cools down while it is in either SHOT_LIMITING_IMMINENT or SHOT_LIMITING state, the sensor
will return to the NORMAL state.

An independent state machine runs for thermal shutdown. When the sensor reaches the maximum
operating temperature specified in the table Maximum Thermal Performance, the sensor will enter
a SHUTDOWN_IMMINENT state and issue an alert in category OVERTEMP. If the sensor temperature remains
elevated after 30 seconds, the sensor will shut down and issue alert 0x0100006B.

Note

Please refer to the Hardware User Manual to learnmore about themaximum thermal performance.

Information regarding the shot limiting status is presented as part of the lidar data packet in the
Configurable Data Packet Format. Shot limiting status will be a part of the packet header when config
parameter udp_profile_lidar is set to one of the following values shown below.

RNG19_RFL8_SIG16_NIR16 Return Profile

RNG15_RFL8_NIR8 Return Profile

RNG19_RFL8_SIG16_NIR16_DUAL Return Profile

FUSA_RNG15_RFL8_NIR8_DUAL Return Profile

60

The following flags are present in configurable data packet header:

Shot limiting status [4 bit unsigned int] - Indicates the shot limiting status of the sensor. Different
codes indicates whether the sensor is in Normal Operation or in Shot limiting.

Shutdown Status [4 bit unsigned int] - Indicates whether thermal shutdown is imminent. This can be
due to shot limiting being saturated, or due to any other over temperature conditions and depending
upon the situation the appropriate alert is generated. When thermal shutdown is imminent, this flag
will be set to 1 and the Thermal Shutdown Countdown field will be set to 30 seconds.

Shot limiting Countdown [8 bit unsigned int] - Countdown from 30 seconds to indicate when shot
limiting is imminent. When the condition for entering shot limiting is met, the shot limiting status bit
is set to 0x01 and the alert 0x0100000E takes effect. At this point the shot limiting counter will be set
to 30 seconds and a countdown to initiate shot limiting will start.

Shutdown Countdown [8 bit unsigned int] - Countdown from 30 seconds to indicate that thermal
shutdown is imminent. When a thermal shutdown is completed, the alert 0x0100006B will take effect
and the sensor will automatically go to the ERROR state and stop outputting data.

The following table describes the codes in the shot limiting status flags, andwhatmode it corresponds
to:

Table 6.11: Shot Limiting Status Flags

Shot Limiting
status flags

Description

0x00 Normal Operation. When the sensor is not in shot limiting, the shot limiting
status flag will be set to 0x00, and shot limiting countdown will be set to 0x00.

0x01 When the condition for entering Shot limiting is met, we set the Shot Limiting
Status bit 0x01 and the alert 0x0100000E is in effect, informing that shot limiting
is imminent.

0x02 In this mode, we reduce the % of nominal laser duty cycle by 0-10% from NOR-
MAL OPERATION. There will be an approximate reduction in the sensor max
range by 3%.

0x03 In this mode, we reduce the% of nominal laser duty cycle by 10-20% fromNOR-
MAL OPERATION. There will be an approximate reduction in the sensor max
range by 6%.

0x04 In this mode, we reduce the % of nominal laser duty cycle by 20-30% from
NORMALOPERATION. There will be an approximate reduction in the sensormax
range by 9%.

61

Table 6.12: Shot Limiting Status Flags Cntd.

Shot Limiting
status flags

Description

0x05 In this mode, we reduce the % of nominal laser duty cycle by 30-40% from
NORMALOPERATION. There will be an approximate reduction in the sensormax
range by 12%.

0x06 In this mode, we reduce the % of nominal laser duty cycle by 40-50% from
NORMALOPERATION. There will be an approximate reduction in the sensormax
range by 16%. For OS2 and OSDome sensors this mode is when shot limiting
is saturated and alert 0x0100003A is in effect. There will be an approximate
reduction in the sensor max range by 21%.

0x07 In this mode, we reduce the % of nominal laser duty cycle by 50-60% from
NORMALOPERATION. There will be an approximate reduction in the sensormax
range by 21%.

0x08 In thismode, we reduce the%of nominal laser duty cycle by 60-70% fromNOR-
MAL OPERATION. There will be an approximate reduction in the sensor max
range by 25%.

0x09 In this mode, we reduce the% of nominal laser duty cycle by 70-75% fromNOR-
MAL OPERATION. There will be an approximate reduction in the sensor max
range by 27%. For OS0 and OS1 sensors this mode is when shot limiting is
saturated and alert 0x0100003A is in effect. There will be an approximate re-
duction in the sensor max range by 27%.

62

6.8 Minimum Range Threshold

Minimum Range Threshold (cm) is a new feature added in FW v3.1 that reduces the minimum range of
the sensor, enabling it to detect targets all the way up to the sensor window.

In the past, Ouster sensors were subject to a minimum range limitation dictated by the hardware
revision. However, Ouster has made significant strides in overcoming this limitation. Now, users have
the capability to eliminate the blind zone and extend the field of view (FOV) to the sensor window.

Additionally, users have the flexibility to configure the minimum range according to their specific re-
quirements (Valid Values= 0cm, 30cm and 50cm).

6.8.1 Configuring min_range

Users can use HTTP API endpoint to set this parameter, please refer tomin_range_threshold_cm.

Min_range_threshold = 0 cm (Sensor Window): This setting allows the sensor to operate within its
full range capability, from the closest detectable point up to the sensor window.

Min_range_threshold = 30 cm (Min_range of previous sensors i.e., Rev6 and prior): Users can set
the minimum range to 30 cm, excluding detection within the first 30 cm from the sensor.

Min_range_threshold= 50 cm (Default for Rev7 and later): The default setting for Rev7 is aminimum
range of 50 cm, providing a standard configuration for most applications.

Note

When min_range_threshold_cm is set to 30cm or less, Ouster recommends setting return_order to
FARTHEST_TO_NEAREST, especially when the udp_profile_lidar is also set to Single Return. Also, for
best performance in the region closer than 50cm, Ouster recommends keeping the sensor window
clean.

6.8.2 Use Cases

Vehicle Applications: When mounted on vehicles or machinery, users have the flexibility to
adjust the minimum range based on the detection of nearby objects. This feature helps in mini-
mizing false positives and significantly enhances safety, as it ensures that the system responds
accurately to potential obstacles or hazards in the vicinity.

Customized Sensing: In applications where specific ranges of interest are known in advance,
such as robotics or drones, adjusting the minimum range allows for more precise and efficient
sensing.

Environmental Adaptability: Users operating in challenging environments, such as crowded
spaces or highly reflective surfaces, can tailor the sensor’s minimum range to improve perfor-
mance and accuracy.

63

Filteringout unwanteddetections: and focusing on relevant objectswithin the sensor’s field of
view. This customization enhances data quality and reliability, particularly in complex operating
environments.

64

6.9 Return Order

6.9.1 Overview

The Rev7 Ouster sensors are equipped with the capability to detect up to a total of 2 returns from the
target. This hardware-enabled feature allows for the independent collection of information regardless
of the lidar mode selected by the user, meaning the lidar can detect up to 2 returns in all modes
including Single Return, Dual Return, and Low Data Rate modes.

With the introduction of Firmware 3.1, a new feature has been introduced, allowing users to sort returns
by their order of detection. This feature enables users to rearrange returns based on factors such
as range or signal strength, providing the ability to optimize sensor performance to meet specific
application requirements.

6.9.2 Sorting Returns

Rev 7 sensors are capable of processing two returns, regardless of the udp_data_profile that has been
selected (Single Return, Dual Return, Low Data Packet and FUSA Data Packet). Users can configure the
sensor (using return_order) to order returns based on either signal strength or range. This flexibility
allows for optimized data processing and interpretation, ensuring that the most relevant information
is utilized for decision-making tasks.

This customization provides users with the ability to tailor the sensor’s behavior to suit their specific
application requirements and this extends to the following data formats:

RNG19_RFL8_SIG16_NIR16 Return Profile,

RNG15_RFL8_NIR8 Return Profile,

RNG19_RFL8_SIG16_NIR16_DUAL Return Profile and

FUSA_RNG15_RFL8_NIR8_DUAL Return Profile

When return_order is selected the sensor returns the two strongest returns for each radial beam. The
order in which these two returns appear depends on the setting of the return order which has the
following possible values.

STRONGEST_TO_WEAKEST: The first return corresponds to the strongest signal strength among the
two returns, while the subsequent return represents the next strongest signal (or the weaker of
the two returns). This order of returns prioritizes points based on their signal strength, ensuring
that the strongest signals are processed first. Such prioritization proves beneficial in applica-
tions where identifying the most prominent or reflective objects is essential.

65

FARTHEST_TO_NEAREST: The two returns are sorted based on their measured Range value. The first
return corresponds to the farthest of the two returns, followed by the next strongest, and conse-
quently the nearest of the two strongest returns. This order of returns arranges points according
to their distance from the lidar sensor, listing the farthest points first. Such sorting proves in-
valuable when emphasis is placed on comprehending the spatial distribution of objects within
the sensor’s field of view.

Note

When min_range_threshold_cm is set to 30cm or less, Ouster recommends setting return_order to
FARTHEST_TO_NEAREST, especially when the udp_profile_lidar is also set to Single Return.

NEAREST_TO_FARTHEST: The nearest of the two strongest returns is the first return and the farthest
of the two strongest returns follows. This return order prioritizes the closest point, listing it
first. This order can be beneficial in applications where identifying nearby obstacles or points
of interest is critical.

The choice of return order depends on the application. For example, in obstacle detection scenarios,
NEAREST_TO_FARTHEST might be preferred for identifying nearby objects, whilst in mapping applications
FARTHEST_TO_NEAREST could be more suitable for capturing the spatial layout of the environment.

The following return order can be set STRONGEST_TO_WEAKEST (Default), NEAREST_TO_FARTHEST and FAR-
THEST_TO_NEAREST. Users can use HTTP API endpoint to set this parameter, please refer to return_order.
By default, the return_order parameter is set to STRONGEST_TO_WEAKEST. However, users can adjust this
parameter according to their specific preferences.

66

6.10 User Editable Data Field

The User Editable Data Field is a versatile feature embedded within the Ouster Sensor, providing users
with a preallocated text field for storing various types of information directly on the sensor itself. This
field serves multiple purposes, including storing specific sensor information, calibration data, or any
other relevant data crucial for operational efficiency.

Notably, the User Editable Data Field offers the flexibility to retain or delete its respective data, de-
pending on the action taken, such as deleting the sensor configuration.

Note

Additional Information:

Valid values for UED: empty string or string containing non-binary ASCII and/or Unicode
characters

Size limit for UED string: 128KB with 1KB = 1024bytes (Total = 131,072 bytes)

6.10.1 Example Use Case:

A common challenge faced by systems employing multiple Ouster sensors with differing hardware
and firmware versions is ensuring the compatibility of mounted sensors with the application require-
ments. In scenarios where numerous sensors are deployed remotely and in large quantities, visually
inspecting and identifying the appropriate sensor for each location becomes impractical. This lack of
clarity can lead to incorrect installations and operational disruptions.

6.10.2 Proposed Solution:

To mitigate this challenge, a solution is proposed that harnesses the User Editable Field (UEF) on
Ouster sensors, coupled with client-generated signatures using private keys. This solution aims to
establish a robust validation mechanism, ensuring the authenticity and compatibility of Ouster lidar
sensors within the users system.

6.10.3 Implementation of the Proposed Solution:

Ouster provides each sensor with a User Editable Field (UEF), initially empty, enabling users to write
signatures without impacting core sensor functionality. This feature empowers users to customize
and authenticate sensor data seamlessly.

67

6.10.4 Customer Signing Process:

Upon receiving a sensor, the customer retrieves the unique and unalterable serial number (SN) from
the sensor.

The customer then employs their private key to sign the SN securely, generating a unique signature,
which is subsequently written to the User Editable Field (UEF) on the sensor.

6.10.5 Customer System Validation:

During systemstartup, the customer’s system retrieves both theSNand the signature from the sensor.

Utilizing the customer’s widely available public key, the system meticulously verifies the signature
within the UEF against the SN.

A successful verification assures the integrity of the sensor, confirming that it hasn’t been tampered
with, and that the signature corresponds accurately to the intended sensor.

6.10.6 HTTP Endpoints for User Editable Field (UEF)

This field can be used for a number of purposes such as storing specific information about the sensor,
qualifying a sensor, calibration data, or any other information.

Example HTTP API endpoints:

GET /api/v1/user/data

PUT /api/v1/user/data

DELETE /api/v1/user/data

6.10.7 HTTP Endpoints for Optional Parameters - data policy

The policy key maps to the active policy as applied with PUT api/v1/user/data?policy=<policy_str>.

<policy_str> have the following options available:

clear_on_config_delete by default

keep_on_config_delete

The User Editable Data comes with the ability to keep or delete its respective data based on the
action of deleting the sensor config. That can be done by setting the value of the User Editable
Data policy to either keep_on_config_delete or clear_on_config_delete (which is default), where if the
keep_on_config_delete policy is set then the User Editable Data data will not be deleted when the sen-
sor config is deleted, and if the clear_on_config_delete policy is set then the User Editable Data data
will be deleted when the sensor config is deleted. The User Editable Data data and User Editable Data
policy must be set in the same HTTP PUT request. If the User Editable Data value is set without the
policy, then the policy will automatically be reset to clear_on_config_delete.

68

The User Editable Data data value (i.e. text) is persisted across sensor config resets, config reboots,
firmware upgrades, and sensor power cycles.

When querying the User Editable Data, the include_metadata field can be specified to control the ver-
bosity of the returned data. If set to ‘true’ then the value of the User Editable Data field will be returned
in addition to the value of the policy. If set to ‘false’ (which is default) then only the value of the User
Editable Data field will be returned.

Note

Data policy has no effect on the User Editable Data field.

Example HTTP API endpoints:

PUT /api/v1/user/data?policy=clear_on_config_delete

PUT /api/v1/user/data?policy=keep_on_config_delete

6.10.8 Optional Parameters - include_metadata

Same as nominal GET but returns a JSON dictionary of the form { "value": str, "policy": str }where
the value key maps to the nominal value returned by GET with no arguments.

Note

include_metadata has no effect on the User Editable Data field.

This feature lets user to query the user editable data field to get policy and valuewhen include_metadata
is set to true/1 and only the value when include_matadata is set to false/0

Example HTTP API endpoints:

GET /api/v1/user/data?include_metadata=true

GET /api/v1/user/data?include_metadata=false

69

7 Multi-Sensor Synchronization

7.1 Phase Lock

Phase locking allows a sensor to consistently pass through a specific angle at the top, tenth (1024X10
Hz mode), or the twentieth (1024x20 Hz mode) of a second on each rotation. The phase lock control
loop runs at 1000 Hz. Phase locking is useful for synchronizing a sensor with other devices including
camera, radar, and other lidar.

A sensor must first be time-synchronized from an external source and must be in either the
TIME_FROM_PTP_1588 or TIME_FROM_SYNC_PULSE_IN timestamp_mode before entering phase lock.

7.1.1 Phase Locking Reference Frame

Phase locking commands use angles defined in the Lidar Coordinate Frame in millidegrees. As a re-
minder, angles in this frame increment counterclockwise when viewed from the top. Below is the Lidar
Coordinate Frame from a top-down perspective:

0° towards the external connector

90° a quarter turn counterclockwise from the connector

180° opposite the connector

270° three quarter turns counterclockwise from the connector

7.1.2 Phase Locking Commands

Command to enable or disable phase lock:

By default, phase_lock_enable is false. Please use the below HTTP API Example.

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_enable:=false"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

Command to set the phase lock offset angle in the Lidar Coordinate Frame:

70

Figure 7.1: Lidar coordinate frame Top-Down view

By default, phase_lock_offset value is 0. <angle_in_millidegrees> is an integer from 0 to 360000. Please
use the below HTTP API Example to set phase_lock_offset from 0 to 180000.

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_offset:=180000"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

7.1.3 Multi-sensor Example

In this example below, we are trying to phase lock all three sensors on the car so that they point towards
the front of the car at the same time. Note that their external connectors point in different directions.

Assuming the three sensors are properly time synchronized via an external source, the following shows
the netcat console input commands and responses from configuring the sensors so that they point
forward at the same time.

71

Figure 7.2: Van with 3 Sensors mounted

Set Sensor 1 to phase lock at 180°:

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_offset:=180000"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

Set Sensor 2 to phase lock at 90°:

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_offset:=90000"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

Set Sensor 3 to phase lock at 270°:

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json

(continues on next page)

72

(continued from previous page)
Content-Type: application/json

"phase_lock_offset:=270000"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

7.1.4 Accuracy

The following chart shows the expected angular position accuracy under normal operating conditions.

Table 7.1: Phase Lock Accuracy

Product line 10Hz 20Hz

OS0 and OS1 (Gen 1 and Gen 2) 0.5˚ 0.5˚

OS2 5˚ 10˚

7.1.5 Phase Locking Alerts

The following alerts related to phase locking errors are listed below. For the full list of alerts and errors
see the Alerts and Errors section in the Appendix.

Table 7.2: Phase Lock Alerts

id category level description

0x01000050 MOTOR_CONTROL WARN-
ING

The phase lock offset error has exceeded the
threshold.

0x01000051 MOTOR_CONTROL ERROR The phase lock control failed to achieve a lock
multiple times; please contact Ouster at https:
//ouster.com/tech-support.

0x01000024 STARTUP ERROR The phase lock control failed to achieve a lock
during startup.

Note

For information on how to mitigate crosstalk between different Ouster lidars in the same system
refer to Inter-sensor Interference Mitigation section of this manual.

73

https://ouster.com/tech-support
https://ouster.com/tech-support

7.2 Inter-sensor Interference Mitigation

Inter-sensor crosstalk occurs when two sensors are operating close together and they interpret each
other’s laser pulses as their own. Mitigating crosstalk between two sensors is a two step process:

1) Phase lock the two sensors

2) Set azimuth window on each sensor so that they don’t send data when they are pointing at each
other

7.2.1 Two Sensor Example

In this example below, we are trying to mitigate inter-sensor crosstalk between Sensor 1 and Sensor
2 on the car. Both of their connectors are facing towards the back of the car. The Lidar Coordinate
Frame is printed on the back of the vehicle for reference.

Sensor 3

270°

Sensor 2

90°

Sensor 1

180°

90°

0° 180°
270°

270°

Sensor 1

90° Sensor 2

0° 180°
270° 90°

Sensor 1

l

dSensor 2

X Z

Y

Figure 7.3: Example: Inter-sensor crosstalk mitigation between 2 sensors

First and foremost, placing a physical barrier between the two sensors is the best option to mitigate
cross talk in this example and most scenarios. If this is not possible, we can use the phase locking
feature to eliminate the problem. Crosstalk only occurs when one sensor shines its lasers into the
window of another sensor. The goal of phase locking is to force the sensors to point at each other
simultaneously so that crosstalk occurs when sensors aren’t generating important data about the
environment.

1. Time synchronize the two sensors via an external source. See the Time Synchronization section
for more details on time synchronizing sensors with an external GPS or via PTP.

2. Phase lock both sensors such that they point directly at each other at the same time. In this
case, we want Sensor 1 to be pointing at 90° at the same time that Sensor 2 is pointing at 270°.
The example netcat console output would look like below.

Note

In the examples below, to distinguish between the command and expected response, a dash has
been added before the expected response. The actual response will be without the dash.

74

Example: Set Sensor 1 to phase lock at 90°:

Step 1: Set “phase_lock_enable” to true

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_enable:=true"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

Step 2: Set “phase_lock_offset” to 90000

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_offset:=90000"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

Example: Set Sensor 2 to phase lock at 270°:

Step 1: Set “phase_lock_enable” to true

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

"phase_lock_enable:=true"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

Step 2: Set “phase_lock_offset” to 270000

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json
Content-Type: application/json

(continues on next page)

75

(continued from previous page)
"phase_lock_offset:=270000"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 04 Mar 2024 21:20:16 GMT
Server: nginx

3. Set an azimuth window for both sensors. In this case, the region of interest for Sensor 1 is θ1 and
the region of interest for Sensor 2 is θ2

The calculation for θ1 and θ2 is as follows:

θ1 = θ2 = 360◦ − 2 · arctan d

l

In this case, if the two sensors were placed a distance of 100 mm apart, 360◦ − 2 · arctan 81
100 = 360◦ −

78◦ = 282◦ We want to set azimuth window of size 282° for the two sensors, so that they do not send
data in the 78° where they would point at each other. Sensor 1’s azimuth window is the 282° centered
around 270°. Sensor 2’s region of interest is the 282° centered around 90°.

Sensor 1’s azimuth window starts at 129° and follows the CCW direction to end at 51°:

Example CURL command:

curl -i -X POST 192.0.2.123/api/v1/sensor/config -H 'content-type: application/json' --data '{"az-
imuth_window": [129000, 51000]}'

Example HTTP command:

http POST 10.34.24.132/api/v1/sensor/config "azimuth_window:=[129000, 51000]"

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json

"azimuth_window": [129000, 51000]

HTTP/1.1 204 No Content
Server: nginx
Date: Thu, 28 Apr 2022 18:09:49 GMT
Connection: keep-alive

76

Sensor 2’s azimuth window starts at 309° and follows the CCW direction to end at 231°:

Example CURL command:

curl -i -X POST 192.0.2.123/api/v1/sensor/config -H 'content-type: application/json' --data '{"az-
imuth_window": [309000, 231000]}'

Example HTTP command:

http POST 10.34.24.132/api/v1/sensor/config "azimuth_window:=[309000, 231000]"

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123
Accept: application/json

"azimuth_window": [309000, 231000]

HTTP/1.1 204 No Content
Server: nginx
Date: Thu, 28 Apr 2022 18:09:49 GMT
Connection: keep-alive

Table 7.3: Product Line and their Diameter

Product Line At Window At base including fins

OS0 and OS1 (Gen1 and Gen2) 81mm 88mm

OS2 111mm 121mm

77

8 Time Synchronization

8.1 Timing Overview Diagram

Figure 8.1: Signal path with MULTIPURPOSE_IO set as input

Figure 8.2: Signal path with MULTIPURPOSE_IO set as output

78

8.2 Sensor Time Source

All lidar and IMU data is timestamped to a common timer with 10 nanosecond precision.

The common timer can be programmed to run off one of three clock sources:

An internal clock derived from a high accuracy, low drift oscillator.

An opto-isolated digital input from the external connector for timing off an external hard-
ware trigger such as a GPS. The polarity of this input signal is programmable. For instance,
both a GPS PPS pulse and a 30 Hz frame sync from an industrial camera can supply a timing
signal to the sensor.

The IEEE 1588 Precision Time Protocol. PTP provides the convenience of configuring timing
over a network that supports IEEE 1588 with no additional hardware signals.

8.2.1 Setting Ouster Sensor Time Source

The source for measurement timestamps can be configured using the timestamp_mode. The available
modes are described below:

Table8.1: Timestamp Modes

Command Response

TIME_FROM_INTERNAL_OSC Use the internal clock. Free running counter based on the sensor’s
internal oscillator. Counts seconds and nanoseconds since sensor
turn on, reported at ns resolution (both a second and nanosecond
register in every UDP packet), but minimum increment is on the
order of 10 ns.

TIME_FROM_SYNC_PULSE_IN A free running counter synced to the SYNC_PULSE_IN input
counts seconds (# of pulses) and nanoseconds since sensor turn
on. If multipurpose_io_mode is set to INPUT_NMEA_UART then the sec-
onds register jumps to time extracted from a NMEA $GPRMCmes-
sage read on the multipurpose_io port. Reported at ns resolution
(both a second and nanosecond register in every UDP packet), but
minimum increment is on the order of 10 ns.

TIME_FROM_PTP_1588 Synchronize with an external PTP master. A monotonically in-
creasing counter that will begin counting seconds and nanosec-
onds since startup. As soon as a 1588 sync event happens, the
time will be updated to seconds and nanoseconds since 1970. The
counter must always count forward in time. If another 1588 sync
event happens the counter will either jump forward to match the
new time, or slow itself down. It is reported at ns resolution (there
is both a second and nanosecond register in every UDP packet),
but the minimum increment varies.

79

If configuring the sensor to synchronize time from an external sync pulse, the pulse polarity can be
specified as described in the Sensor Configuration. Pulse-in frequency is assumed to be 1 Hz. For
example, using POST commands will set the sensor to expect an active low pulse and configure the
seconds timestamp to be pulse count since sensor startup:

timestamp_mode

sync_pulse_in_polarity

Note

Please refer to HTTP API Reference Guide for detailed POST command.

To configure the multipurpose-io port of the sensor to accept an external NMEA UART message, the
multipurpose_io_mode parameter must be set to INPUT_NMEA_UART as described in External Trigger Clock
Source. Once a valid UART message is received by the sensor, the seconds timestamp will snap to
the latest timestamp received. The expected NMEA UART message is configurable. For example, the
below commands will set the sensor to accept an NMEA UARTmessage that is active high with a baud
rate of 115200 bits per second, add 27 additional leap seconds, and accept messages even with a valid
character not set:

multipurpose_io_mode

nmea_in_polarity

nmea_baud_rate

nmea_leap_seconds

nmea_ignore_valid_char

Note

After POST api/v1/sensor/config request is received successfully, the sensor will reinitialize auto-
matically to make the new configuration active and the config settings are persisted across power
cycles.

80

8.2.2 External Trigger Clock Source

Additionally, the sensor can be configured to output a SYNC_PULSE_OUT signal from a variety of
sources. See example commands in the HTTP API Reference Guide section. Pulses will always be
evenly spaced.

This can be enabled through the multipurpose_io_mode configuration parameter.

Table 8.2: multipurpose_io_mode Configuration Parameters

Configuration Response

OFF Do not output a SYNC_PULSE_OUT signal.

INPUT_NMEA_UART Reconfigures the MULTIPURPOSE_IO port as an input. See Setting
Ouster Sensor Time Source for more information.

OUTPUT_FROM_INTERNAL_OSC Output a SYNC_PULSE_OUT signal synchronized with the internal clock.

OUTPUT_FROM_SYNC_PULSE_IN Output a SYNC_PULSE_OUT signal synchronized with a SYNC_PULSE_IN
provided to the unit.

OUTPUT_FROM_PTP_1588 Output a SYNC_PULSE_OUT signal synchronized with an external PTP
IEEE 1588 master.

OUTPUT_FROM_ENCODER_ANGLE Output a SYNC_PULSE_OUT signal with a user defined rate in an integer
number of degrees.

When the sensor’s multipurpose_io_mode is set to OUTPUT_FROM_INTERNAL_OSC, OUTPUT_FROM_SYNC_PULSE_IN,
or OUTPUT_FROM_PTP_1588, then sync_pulse_out_frequency (Hz) parameter can be used to define the out-
put rate. It defaults to 1 Hz. It should be greater than 0 Hz and maximum sync_pulse_out_frequency is
limited by the criterion below.

When the sensor is set to OUTPUT_FROM_ENCODER_ANGLE, then the sync_pulse_out_angle (deg) parameter
can be used to define the output pulse rate. This allows the user to output a SYNC_PULSE_OUT sig-
nal when the encoder passes a specified angle, or multiple of the angle, indexed from 0 crossing,
in degrees. It should be an integer between 0 and 360 degrees, inclusive. However, the minimum
sync_pulse_out_angle is also limited by the criterion below.

In all modes, the output pulse width is defined by sync_pulse_out_pulse_width (ms).

Note

If sync_pulse_out_pulse_width x sync_pulse_out_frequency is close to 1 second, the output pulses will
not function (will not return to 0). For example, at 10 Hz rotation and a 10 ms pulse width, the
limitation on the number of pulses per rotation is 9.

81

Examples

Here are examples and their effect on output pulse when lidar_mode is 1024x10, and assuming
sync_pulse_out_pulse_width is 10 ms. Please refer to POST command examples on HTTP API Reference
Guide for detailed command line.

Table 8.3: Table representation with valid values and expected response

Configuration (POST /api/v1/sensor/config) Response

multipurpose_io_mode=OUTPUT_FROM_SYNC_PULSE_IN
sync_pulse_out_pulse_width=10
sync_pulse_out_frequency=1

The output pulse frequency is 1
Hz. Each pulse is 10 ms wide.
sync_pulse_out_pulse_width and
sync_pulse_out_frequency commands are
optional because they just re-command
the default values.

multipurpose_io_mode=OUTPUT_FROM_SYNC_PULSE_IN
sync_pulse_out_frequency=50

The output pulse frequency is 50 Hz. Each
pulse is 10 ms wide.

multipurpose_io_mode=OUTPUT_FROM_ENCODER_ANGLE
sync_pulse_out_angle=360

The output pulse frequency is 10 Hz, since
the sensor is in 10 Hz mode (10 rotations
/ sec) and the angle is set to 360º, a full
rotation. Each pulse is 10 ms wide.

multipurpose_io_mode=OUTPUT_FROM_ENCODER_ANGLE
sync_pulse_out_angle=45

The output pulse frequency is 80 Hz, since
the sensor is in 10 Hz mode (10 rotations /
sec) and the angle is set to 45º. Each full
rotation will have 8 pulses. Each pulse is
10 ms wide.

8.3 NMEA Message Format

The Ouster Sensor expects a standard NMEA $GPRMC UART message. Data (called a sentence) is a
simple ASCII string starting with a ‘$’ character and ending with a return character. Fields of the sen-
tence are separated with a ‘,’ character, and the last field (a checksum) is separated by a ‘*’ character.

The max character length of a standard message is 80 characters; however, the Ouster Sensor can
support non-standard messages up to 85 characters (see Example 2 below).

The Ouster Sensor will deliver time in the UDP packet by calculating seconds since 00:00:00 Thursday,
1 January 1970. nmea_leap_seconds by default is 0, meaning this calculation will not take into account
any leap seconds. If nmea_leap_seconds is 0 then the reported time is Unix Epoch time. As of February,
2019, Coordinated Universal Time (UTC) lags behind International Atomic Time (TAI) by an offset of 37
seconds (10 seconds from the initial UTC offset when UTC was introduced in 1972 + 27 leap seconds
announced in the intervening years). Therefore, setting nmea_leap_seconds to 37 in February of 2019
would make the timestamps match the TAI standard.

nmea_in_polarity by default is ACTIVE_HIGH. This means that a UART start bit will occur directly after a
falling edge. If using RS-232, the UART signal may be inverted (where a start bit occurs directly after

82

a rising edge). In this case, nmea_in_polarity should be set to ACTIVE_LOW.

8.3.1 Example 1 Message:

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

Field Description

$GPRMC Recommended Minimum sentence C

123519 Fix taken at 12:35:19 UTC

A Status A=active or V=Void

4807.038 Latitude 48 deg 07.038’

N Latitude cardinal reference

01131.000 Longitude 11 deg 31.000’

E Longitude cardinal reference

022.4 Speed over the ground in knots

084.4 Track angle in degrees True

230394 Date - 23rd of March 1994

003.1 Magnetic Variation

W Magnetic cardinal reference

A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator

*6A The checksum data, always begins with *

83

8.3.2 Example 2 Message:

$GPRMC,042901.00,A,3745.871698,N,12224.825960,W,0.874,327.72,130219,13.39,E,A,*60

Field Description

$GPRMC Recommended Minimum sentence C

042901.00 Fix taken at 4:29:01 UTC

A Status A=active or V=Void

3745.871698 Latitude 37 deg 45.871698’

N Latitude cardinal reference

12224.825960 Longitude 12 deg 24.825960’

W Longitude cardinal reference

0.874 Speed over the ground in knots

327.72 Track angle in degrees True

130219 Date - 13th of February 2019

13.39 Magnetic Variation

E Magnetic cardinal reference

A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator

*60 The checksum data, always begins with *

84

9 GPS/GNSS Synchronization Guide

For more information on how to physically connect a GPS to your Ouster sensor and synchronise the
Ouster sensor timestamp to an NMEA sentence, please refer to your sensor’s Hardware User Manual.

9.1 Configuring the Ouster Sensor

Now that all GPS configurations are in place and connections to the Ouster sensor have been suc-
cessfully established, it’s time to initiate the synchronization process on the Ouster sensor, ensuring
its timestamp aligns precisely with the GPS signal.

Set the timestamp_mode to TIME_FROM_SYNC_PULSE_IN:

timestamp_mode

Set the multipurpose_io_mode to INPUT_NMEA_UART:

multipurpose_io_mode

Set the polarity of the sync_pulse_in pin to match the GPS PPS polarity:

sync_pulse_in_polarity

Set the polarity of the multipurpose_io pin to match the GPS NMEA UART polarity:

nmea_in_polarity

Set the nmea_baud_rate to match the GPS NMEA baud rate:

nmea_baud_rate

Set the nmea_leap_seconds to match the current leap seconds as defined by TAI Time at this web-
site, at time of writing this the leap seconds are 37:

nmea_leap_seconds

Note

After POST api/v1/sensor/config request is received successfully, the sensor will reinitialize auto-
matically to make the new configuration active and the config settings are persisted across power
cycles.

85

https://ouster.com/downloads
http://www.leapsecond.com/java/gpsclock.htm
http://www.leapsecond.com/java/gpsclock.htm

9.1.1 Checking for Sync

Once you have completed all the above you should be able to check for synchronization

Check the output from the HTTP Endpoint GET /api/v1/time.

Verify that the sensor is locked onto the PPS signal.

”sync_pulse_in”: { “locked”: 1 }

If not check the polarity and change it if necessary.

Verify that the sensor is locked on the NMEA signal.

“nmea”: { “locked”: 1 }

If not check the polarity and baud rate and change them if necessary.

Verify that last_read_message looks like a valid GPRMC sentence.

“decoding”: {“last_read_message”: “GPRMC,024041.00,A,5107.0017737,N,11402.3291611,
W,0.080,323.3,020420,0.0,E,A*20”}

Verify that timestamp time has updated to a reasonable GPS time.

“timestamp”: {“time”: 1585881641.96139565999999,

“mode”: “TIME_FROM_SYNC_PUSLE_IN”,

“time_options”: { “sync_pulse_in”: 1585881641}}

Example output from GET /api/v1/time:

{
"timestamp":{

"time":1585881641.96139565999999,
"mode":"TIME_FROM_SYNC_PUSLE_IN",
"time_options":{

"sync_pulse_in":1585881641,
"internal_osc":302,
"ptp_1588":309

}
},
"sync_pulse_in":{

"locked":1,
"diagnostics":{

"last_period_nsec":10,
"count_unfiltered":832,
"count":832

},
"polarity":"ACTIVE_HIGH"

},
"multipurpose_io":{

"mode":"INPUT_NMEA_UART",
"sync_pulse_out":{

"pulse_width_ms":10,
"angle_deg":360,
"frequency_hz":1,
"polarity":"ACTIVE_HIGH"

(continues on next page)

86

(continued from previous page)
},
"nmea":{

"locked":1,
"baud_rate":"BAUD_9600",
"diagnostics":{

"io_checks":{
"bit_count":2938457,
"bit_count_unfilterd":2938457,
"start_char_count":832,
"char_count":66526

},
"decoding":{

"last_read_message":"GPRMC,024041.00,A,5107.0017737,N,11402.3291611,W,
0.080,323.3,020420,0.0,E,A*20",

"date_decoded_count":832,
"not_valid_count":0,
"utc_decoded_count":832

}
},
"leap_seconds":37,
"ignore_valid_char":0,
"polarity":"ACTIVE_HIGH"

}
}

}

87

10 Sensor Configuration

10.1 Overview

Overview of sensor configuration parameters. For detailed description of each parameter refer to
Description.

Table10.1: Overview

Parameter Type Valid Values

udp_dest String "" (default)

udp_port_lidar Integer 7502 (default)

udp_port_imu Integer 7503 (default)

sync_pulse_in_polarity Keyword ACTIVE_HIGH (default)
ACTIVE_LOW

sync_pulse_out_polarity Keyword ACTIVE_LOW (default)
ACTIVE_HIGH

sync_pulse_out_frequency Integer >= 1 1 (default)

sync_pulse_out_angle Integer [0 … 360] 360 (default)

sync_pulse_out_pulse_width Integer >= 0 10 (default)

nmea_in_polarity Keyword ACTIVE_HIGH (default)
ACTIVE_LOW

nmea_ignore_valid_char Integer 0 (default)
1

nmea_baud_rate Keyword BAUD_9600 (default)
BAUD_115200

nmea_leap_seconds Integer >= 0 0 (default)

azimuth_window List [0,360000] (default)

signal_multiplier Number 0.25
0.5
1 (default)
2
3

udp_profile_lidar Keyword RNG19_RFL8_SIG16_NIR16 (default)
RNG19_RFL8_SIG16_NIR16_DUAL
RNG15_RFL8_NIR8
FUSA_RNG15_RFL8_NIR8_DUAL

continues on next page

88

Table 10.1 – continued from previous page

Parameter Type Valid Values

udp_profile_imu Keyword LEGACY (default)

phase_lock_enable Boolean false (default)
true

phase_lock_offset Integer [0 … 360] 0 (default)

lidar_mode Keyword 512x10
1024x10 (default)
2048x10
512x20
1024x20

timestamp_mode Keyword TIME_FROM_INTERNAL_OSC (default)
TIME_FROM_PTP_1588
TIME_FROM_SYNC_PULSE_IN

multipurpose_io_mode Keyword OFF (default)
INPUT_NMEA_UART
OUTPUT_FROM_INTERNAL_OSC
OUTPUT_FROM_SYNC_PULSE_IN
OUTPUT_FROM_PTP_1588
OUTPUT_FROM_ENCODER_ANGLE

operating_mode Keyword NORMAL (default)
STANDBY

min_range_threshold_cm Number 0
30
50 (default)

return_order Keyword STRONGEST_TO_WEAKEST (Default),
NEAREST_TO_FARTHEST
FARTHEST_TO_NEAREST

gyro_fsr Keyword NORMAL (Default),
EXTENDED

accel_fsr Keyword NORMAL (Default),
EXTENDED

89

10.2 Description

10.2.1 udp_dest

Description:

Type: String

Default: “192.0.2.123”

Destination to which the sensor sends UDP traffic.

Note

As of now, setting the udp_dest to “@auto” is only supported through HTTP POST /api/v1/sensor/
config. Parameter udp_ip has been deprecated in firmware v2.4, please use the udp_dest parameter.

10.2.2 udp_port_lidar

Description:

Type: Integer [0 … 65535]

Default: 7502

The <port> on udp_dest to which lidar data will be sent (7502, default).

10.2.3 udp_port_imu

Description:

Type: Integer [0 … 65535]

Default: 7503

The <port> on udp_dest to which IMU data will be sent (7503, default).

10.2.4 sync_pulse_in_polarity

Description:

Type: Keyword

Default: “ACTIVE_HIGH”

Enum:

“ACTIVE_HIGH”

“ACTIVE_LOW”

90

The polarity of SYNC_PULSE_IN input, which controls polarity of SYNC_PULSE_IN pin when
timestamp_mode is set in TIME_FROM_SYNC_PULSE_IN.

10.2.5 sync_pulse_out_polarity

Description:

Type: Keyword

Default: “ACTIVE_HIGH”

The polarity of SYNC_PULSE_OUT output, if the sensor is set as the master sensor used for time
synchronization.

10.2.6 sync_pulse_out_frequency

Description:

Type: Integer >= 1

Default: 1

The output SYNC_PULSE_OUT pulse rate in Hz. Valid inputs are integers >0 Hz, but also limited
by the criteria described in the Time Synchronization section of the Firmware User Manual.

10.2.7 sync_pulse_out_angle

Description:

Type: Integer [0 … 360]

Default: 360

The angle in terms of degrees that the sensor traverses between each SYNC_PULSE_OUT pulse.
E.g. a value of 180 means a sync pulse is sent out every 180° for a total of two pulses per rev-
olution and angular frequency of 20 Hz if the sensor is 1024x10 Hz lidar mode. Valid inputs are
integers between 0 and 360 inclusive but also limited by the criteria described in the Time Syn-
chronization section of Firmware User Manual.

10.2.8 sync_pulse_out_pulse_width

Description:

Type: Integer >= 0

Default: 10

The polarity of SYNC_PULSE_OUT output, if the sensor is set as the master sensor used for
time synchronization. Output SYNC_PULSE_OUT pulse width is in ms, increments in 1 ms. Valid
inputs are integers greater than 0 ms, but also limited by the criteria described in the Time Syn-
chronization section of Firmware User Manual.

91

10.2.9 nmea_in_polarity

Description:

Type: Keyword

Default: “ACTIVE_HIGH”

Enum:

“ACTIVE_HIGH”

“ACTIVE_LOW”

Set the polarity of NMEA UART input $GPRMC messages. See Time Synchronization section in
sensor user manual for NMEA use case. Use ACTIVE_HIGH if UART is active high, idle low, and start
bit is after a falling edge.

10.2.10 nmea_ignore_valid_char

Description:

Type: Integer [0 … 1]

Default: 0

Set 0 if NMEA UART input $GPRMCmessages should be ignored if valid character is not set, and
1 if messages should be used for time syncing regardless of the valid character.

10.2.11 nmea_baud_rate

Description:

Type: Keyword

Default: “BAUD_9600”

Enum:

“BAUD_9600”

“BAUD_115200”

BAUD_9600 (default) or BAUD_115200 for the expected baud rate the sensor is attempting to decode
for NMEA UART input $GPRMC messages.

92

10.2.12 nmea_leap_seconds

Description:

Type: Integer >= 0

Default: 0

Set an integer number of leap seconds that will be added to the UDP timestampwhen calculating
seconds since 00:00:00 Thursday, 1 January 1970. For Unix Epoch time, this should be set to 0.

10.2.13 azimuth_window

Description:

Type: List

Default: [0,360000]

Set the visible region of interest of the sensor in millidegrees. Only data from within the speci-
fied azimuth window bounds is sent. The value should be provisioned as: [min_bound_millideg,
max_bound_millideg]

10.2.14 signal_multiplier

Description:

Type: Number [0.25, 0.5, 1 … 3]

Default: 1

The value that the signal_multiplier is configured. By default the sensor has a signal multiplier
value of 1.

For 2x and 3x multipliers, the azimuth_window parameter sets the azimuth window that the lasers
will be enabled in.

The higher the signal multiplier value, the smaller the maximum azimuth window can be.

Signal Multiplier Value Max Azimuth Window for 0.25, 0.5 and 1: (Default) 360°, 2: 180°, 3: 120°.

All sensors have equivalent power draw and thermal output when operating at the max azimuth
window for a particular signalmultiplier value. Therefore, using an azimuthwindow that is smaller
than the maximum allowable azimuth window with a particular signal multiplier value (excluding
1x) can reduce the power draw and thermal output of the sensor.

However, while this can increase the max operating temp of the sensor, it can also degrade the
performance at low temps. This discrepancy will be resolved in a future firmware. The table
below outlines some example use cases.

93

10.2.15 udp_profile_lidar

Description:

Type: Keyword

Default: “RNG19_RFL8_SIG16_NIR16”

Enum:

“RNG19_RFL8_SIG16_NIR16”

“RNG19_RFL8_SIG16_NIR16_DUAL”

“RNG15_RFL8_NIR8”

“FUSA_RNG15_RFL8_NIR8_DUAL”

The configuration of the LIDAR data packets. Valid values are RNG19_RFL8_SIG16_NIR16 [Default],
RNG19_RFL8_SIG16_NIR16_DUAL, RNG15_RFL8_NIR8 and FUSA_RNG15_RFL8_NIR8_DUAL.

10.2.16 udp_profile_imu

Description:

Type: Keyword

Default: “LEGACY”

Value: “LEGACY”

The configuration of the IMU data packets. Valid value is LEGACY.

10.2.17 phase_lock_enable

Description: Whether phase locking is enabled. Refer to Phase Lock Section in the Firmware User
Manual for more details on using phase lock.

Type: Boolean

Default: False

Whether phase locking is enabled. Refer to Phase Lock Section in the Firmware User Manual for
more details on using phase lock.

10.2.18 phase_lock_offset

Description:

Type: Integer [0 … 360000]

Default: 0

The angle in the Lidar Coordinate Frame that sensors are locked to inmillidegrees if phase locking
is enabled. Angle is traversed at the top of the second.

94

10.2.19 lidar_mode

Description:

Type: Keyword

Default: “1024x10”

Enum:

“512x10”

“1024x10”

“2048x10”

“512x20”

“1024x20”

The horizontal resolution and rotation rate of the sensor. The effective range of the sensor is
increased by 15-20% for every halving of the number of points gathered e.g. 512x10 has 15-20%
longer range than 512x20.

10.2.20 timestamp_mode

Description:

The method used to timestamp measurements. Valid modes are TIME_FROM_INTERNAL_OSC,
TIME_FROM_SYNC_PULSE_IN, or TIME_FROM_PTP_1588.

10.2.21 multipurpose_io_mode

Description:

Type: Keyword

Default: “OFF”

Enum:

“OFF”

“INPUT_NMEA_UART”

“OUTPUT_FROM_INTERNAL_OSC”

“OUTPUT_FROM_SYNC_PULSE_IN”

“OUTPUT_FROM_PTP_1588”

“OUTPUT_FROM_ENCODER_ANGLE”

Configure the mode of the MULTIPURPOSE_IO pin. Refer to Time Synchronization section in
Firmware user manual for a detailed description of each option.

95

10.2.22 operating_mode

Description:

Type: Any

Default: “NORMAL”

Set NORMAL to put the sensor into a normal operating mode or STANDBY to put the sensor into a low
power (5W) operating mode where the motor does not spin and lasers do not fire.

Note

auto_start_flag is deprecated parameter in Firmware 2.4 and later. auto_start_flag 0 is equivalent
to operating_mode STANDBY and auto_start_flag 1 is equivalent to operating_mode NORMAL.

10.2.23 min_range_threshold_cm

Description:

Type: Number

Default:

50 (default)

Enum:

30

0

Set 0 or 30 (centimeters) to change the sensor’s minimum reported range. Points below the
configured minimum range will not be reported. This parameter is present in firmware v3.1 and
newer.

Note

When min_range_threshold_cm is set to 30 or less, Ouster recommends setting return_order to FAR-
THEST_TO_NEAREST.

10.2.24 return_order

Description:

Type: Keyword

Default:

STRONGEST_TO_WEAKEST

96

Enum:

NEAREST_TO_FARTHEST

FARTHEST_TO_NEAREST

This parameter configures how the lidar returns are ordered. The return order can be set by
the user (STRONGEST_TO_WEAKEST``(default), ``NEAREST_TO_FARTHESTAND FARTHEST_TO_NEAREST). This
parameter applies regardless of the configured udp_profile_lidar and can be used to configure
the only reported return in single return UDP profiles. This parameter is present in firmware v3.1
and newer.

Note

When min_range_threshold_cm is set to 30 or less, Ouster recommends setting return_order to FAR-
THEST_TO_NEAREST.

10.2.25 gyro_fsr

Description:

Type: Keyword

Default:

NORMAL

Enum:

NORMAL

EXTENDED

Two valid values for gyro_fsr are NORMAL (Default), EXTENDED. Please refer to GET
/api/v1/sensor/metadata/imu_data_format for more information.

This configuration parameter enables modification of the gyroscope scale. It provides two set-
tings:

NORMAL (Default): Digital-output X-, Y-, Z-axis with a full-scale range fixed at ± 250 dps
(°/sec).

EXTENDED: Digital-output X-, Y-, Z-axis with a programmable full-scale range of ± 2000 dps
(°/sec).

10.2.26 accel_fsr

Description:

Type: Keyword

Default:

NORMAL

97

Enum:

NORMAL

EXTENDED

Two valid values for accel_fsr are NORMAL (Default), EXTENDED. Please refer to GET
/api/v1/sensor/metadata/imu_data_format for more information.

This configuration parameter facilitates adjustment of the accelerometer scale. It offers two
settings:

NORMAL (Default): Digital-output X-, Y-, Z-axis with a full-scale range fixed at ± 2g.

EXTENDED: Digital-output X-, Y-, Z-axis with an expanded full-scale range of ± 16g.

98

11 HTTP API Reference Guide

This reference guide documents the interface for HTTP API and is accessible via /api/v1 on the sensor
hosted HTTP server.

The sensor can be queried and configured using HTTP requests. This can be done using several dif-
ferent tools such as HTTPie, cURL, Advanced REST Client, etc.

Here is an example using curl command:

$ curl --request GET --url http://192.0.2.123/api/v1/sensor/metadata/lidar_intrinsics

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 38.195, 0, 0, 0, 1]

}

Note

All sensor configuration parameters are CASE SENSITIVE, please refer to this user manual to make
sure the implementation is correct. Additionally all the examples provided for endpoints are tested
on Linux, if you are using Mac OS or Windows please adhere to correct command structure.

11.1 Sensor Metadata

11.1.1 GET /api/v1/sensor/metadata/sensor_info

To GET the sensor information.

GET /api/v1/sensor/metadata/sensor_info HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 285
Content-Type: application/json

{
"build_date": "2023-1-15T15:56:07Z",
"build_rev": "v3.0.0",
"image_rev": "ousteros-image-prod-bootes-v3.0.0+0123456789",
"initialization_id": 390072,
"prod_line": "OS-1-128",
"prod_pn": "860-105010-07",
"prod_sn": "992244000006",
"status": "RUNNING"

}

99

Description: Returns JSON-formatted response that includes sensor serial number, product number,
FW image revision, and sensor status along with other parameters as shown.

11.1.2 GET /api/v1/sensor/metadata/lidar_data_format

To GET the sensor lidar data format.

GET /api/v1/sensor/metadata/lidar_data_format HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 724
Content-Type: application/json
Date: Thu, 28 Apr 2022 19:00:38 GMT
Server: nginx

{
"column_window": [0, 1023],
"columns_per_frame": 1024,
"columns_per_packet": 16,
"pixel_shift_by_row": [

12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4,
-4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12,
12, 4, -4, -12, 12, 4, -4,

-12, 12, 4, -4, -12, 12, 4,
-4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12,
12, 4, -4, -12, 12, 4, -4,

-12, 12, 4, -4, -12, 12, 4,
-4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12,
12, 4, -4, -12, 12, 4, -4,

-12, 12, 4, -4, -12, 12, 4,
4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12,
12, 4, -4, -12, 12, 4, -4,

-12, 12, 4, -4, -12, 12, 4,
-4, -12],

"pixels_per_column": 128,
"udp_profile_imu": "LEGACY",
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL"

}

Description: Returns JSON-formatted response that describes the structure of a lidar packet.

columns_per_frame: Number of measurement columns per frame. This can be 512, 1024 or 2048
depending upon the set lidar mode.

columns_per_packet: Number of measurement blocks contained in a single lidar packet. Note:
This is not user configurable.

100

pixel_shift_by_row: Offset in terms of pixel count. Can be used to destagger image. Varies by
lidar mode. Length of this array is equal to the number of channels of the sensor.

pixels_per_column: Number of channels of the sensor.

column_window: Index of measurement blocks that are active. Default is [0, lidar_mode-1], e.g.
[0,1023]. If there is an azimuth window set, this parameter will reflect whichmeasurement blocks
of data are within the region of interest.

udp_profile_lidar: Lidar data profile format. Defaults to single return profile
(RNG19_RFL8_SIG16_NIR16).

udp_profile_imu: IMU data profile format. Default is LEGACY.

Note

This command only works when the sensor is in RUNNING status.

11.1.3 GET /api/v1/sensor/metadata/imu_data_format

To GET the sensor IMU data format. Valid values are NORMAL (Default) and EXTENDED.

GET /api/v1/sensor/metadata/imu_data_format HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 45
Content-Type: application/json
Date: Mon, 04 Mar 2024 20:07:50 GMT
Server: nginx

{
"accel_fsr": "NORMAL",
"gyro_fsr": "NORMAL"

}

Description:

"accel_fsr" parameter refers to the Full Scale Range of the accelerometer.

This configuration parameter facilitates adjustment of the accelerometer scale. It offers two settings:

NORMAL (Default): Digital-output X-, Y-, Z-axis with a full-scale range fixed at ± 2g.

EXTENDED: Digital-output X-, Y-, Z-axis with an expanded full-scale range of ± 16g.

"gyro_fsr" parameter relates to the Full Scale Range of the gyroscope.

This configuration parameter enables modification of the gyroscope scale. It provides two settings:

NORMAL (Default): Digital-output X-, Y-, Z-axis with a full-scale range fixed at ± 250 dps (°/sec).

101

EXTENDED: Digital-output X-, Y-, Z-axis with a programmable full-scale range of ± 2000 dps (°/sec).

Note

User can run DELETE /api/v1/sensor/config command to configure imu_data_format back to default
i.e., NORMAL. For more information on the IMU specifications refer to Sensor Datasheet.

11.1.4 GET /api/v1/sensor/metadata/beam_intrinsics

To GET the sensor beam intrinsics.

GET /api/v1/sensor/metadata/beam_intrinsics HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 1895
Content-Type: application/json

{
"beam_altitude_angles": [

20.38, 20.12, 19.79, 19.45, 19.14, 18.85, 18.55, 18.2, 17.86, 17.58, 17.27, 16.93,
16.58, 16.29, 15.98, 15.61, 15.27, 14.97, 14.66, 14.3, 13.96, 13.65, 13.33, 12.97,
12.62, 12.31, 11.98, 11.63, 11.27, 10.96, 10.63, 10.26, 9.91, 9.59, 9.26, 8.89,
8.54, 8.21, 7.87, 7.52, 7.15, 6.82, 6.47, 6.11, 5.76, 5.42, 5.08, 4.73, 4.36, 4.03,
3.66, 3.31, 2.96, 2.62, 2.27, 1.91, 1.55, 1.22, 0.85, 0.51, 0.16, -0.2, -0.55, -0.91,
-1.26, -1.62, -1.96, -2.3, -2.66, -3.02, -3.36, -3.72, -4.07, -4.42, -4.77, -5.11,
-5.46, -5.82, -6.16, -6.49, -6.85, -7.21, -7.55, -7.88, -8.23, -8.59, -8.93, -9.25,
-9.6, -9.96, -10.31, -10.63, -10.96, -11.32, -11.67, -11.97, -12.31, -12.68, -13,
-13.32, -13.64, -14, -14.33, -14.63, -14.96, -15.31, -15.64, -15.94, -16.26,
-16.62, -16.93, -17.22, -17.54, -17.9, -18.22, -18.49, -18.8, -19.16, -19.47,
-19.73, -20.04, -20.39, -20.7, -20.94, -21.25, -21.6, -21.9, -22.14

],
"beam_azimuth_angles": [

4.24, 1.41, -1.42, -4.23, 4.23, 1.41, -1.41, -4.23, 4.23, 1.41, -1.41, -4.21, 4.23,
1.42, -1.4, -4.23, 4.24, 1.41, -1.4, -4.23, 4.24, 1.42, -1.4, -4.22, 4.23, 1.41,
-1.41, -4.22, 4.23, 1.42, -1.4, -4.22, 4.24, 1.41, -1.4, -4.23, 4.23, 1.41, -1.41,
-4.22, 4.23, 1.41, -1.41, -4.23, 4.23, 1.4, -1.42, -4.23, 4.23, 1.41, -1.42, -4.23,
4.23, 1.4, -1.42, -4.24, 4.22, 1.41, -1.43, -4.24, 4.22, 1.4, -1.42, -4.24, 4.22,
1.4, -1.42, -4.23, 4.22, 1.4, -1.4, -4.24, 4.22, 1.4, -1.42, -4.24, 4.22, 1.41,
-1.41, -4.22, 4.22, 1.39, -1.42, -4.23, 4.22, 1.41, -1.41, -4.22, 4.23, 1.41,
-1.41, -4.23, 4.23, 1.41, -1.41, -4.22, 4.23, 1.41, -1.41, -4.22, 4.22, 1.41,
-1.41, -4.22, 4.23, 1.41, -1.4, -4.23, 4.22, 1.41, -1.41, -4.23, 4.22, 1.4, -1.41,
-4.23, 4.22, 1.4, -1.41, -4.24, 4.22, 1.4, -1.42, -4.24, 4.22, 1.4, -1.42, -4.23

],
"beam_to_lidar_transform": [1, 0, 0, 15.805999755859375, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
"lidar_origin_to_beam_origin_mm": 15.8059998

}

Description: Returns JSON-formatted beam altitude and azimuth offsets, in degrees. Length of ar-
rays is equal to the number of channels in the sensor. Also returns distance between lidar origin and

102

beam origin in mm, to be used for point cloud calculations.

11.1.5 GET /api/v1/sensor/metadata/imu_intrinsics

To GET the sensor imu intrinsics

GET /api/v1/sensor/metadata/imu_intrinsics HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 91
Content-Type: application/json

{
"imu_to_sensor_transform": [1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 7.645, 0, 0, 0, 1]

}

Description: Returns JSON-formatted IMU transformation matrix needed to transform to the Sensor
Coordinate Frame.

11.1.6 GET /api/v1/sensor/metadata/lidar_intrinsics

To GET the sensor lidar intrinsics

GET /api/v1/sensor/metadata/lidar_intrinsics HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 86
Content-Type: application/json

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 38.195, 0, 0, 0, 1]

}

Description: Returns JSON-formatted lidar transformationmatrix needed to transform to the Sensor
Coordinate Frame.

11.1.7 GET /api/v1/sensor/metadata/calibration_status

To GET the sensor calibration status.

GET /api/v1/sensor/metadata/calibration_status HTTP/1.1
Host: 192.0.2.123

103

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 69
Content-Type: application/json

{
"reflectivity":

{
"timestamp": "2022-11-18T20:31:06",
"valid": true

}
}

Description: Returns JSON formatted calibration status of the sensor reflectivity. valid: true/false
depending on calibration status. timestamp: if valid is true; time atwhich the calibrationwas completed.

11.1.8 GET /api/v1/sensor/config

To GET all sensor configuration parameters.

GET /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 829
Content-Type: application/json
Date: Mon, 04 Mar 2024 20:14:33 GMT
Server: nginx

{
"accel_fsr": "NORMAL",
"azimuth_window": [

0,
360000

],
"columns_per_packet": 16,
"gyro_fsr": "NORMAL",
"lidar_mode": "1024x10",
"min_range_threshold_cm": 0,
"multipurpose_io_mode": "OFF",
"nmea_baud_rate": "BAUD_9600",
"nmea_ignore_valid_char": 0,
"nmea_in_polarity": "ACTIVE_HIGH",
"nmea_leap_seconds": 0,
"operating_mode": "NORMAL",
"phase_lock_enable": false,
"phase_lock_offset": 0,
"return_order": "STRONGEST_TO_WEAKEST",
"signal_multiplier": 0.25,
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"sync_pulse_out_angle": 360,

(continues on next page)

104

(continued from previous page)
"sync_pulse_out_frequency": 1,
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"sync_pulse_out_pulse_width": 10,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"udp_dest": "192.0.2.123",
"udp_port_imu": 7503,
"udp_port_lidar": 7502,
"udp_profile_imu": "LEGACY",
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL"

}

Description: Please refer to Description section for a detailed description of sensor configurable pa-
rameters.

11.1.9 POST /api/v1/sensor/config – Multiple configuration parameters

Multiple configuration parameters can be set at one time using this command. All of the specified
sensor configuration parameters must be set successfully for the POST request to succeed, otherwise
none of the specified sensor configuration parameters will be configured, and an error will be returned.

Note

After POST api/v1/sensor/config request is received successfully, the sensor will reinitialize auto-
matically to make the new configuration active, and the config settings are persisted across power
cycles.

Example 1

POST /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123

{
"accel_fsr": "NORMAL",
"azimuth_window": [

0,
360000

],
"columns_per_packet": 16,
"gyro_fsr": "NORMAL",
"lidar_mode": "1024x10",
"min_range_threshold_cm": 0,
"multipurpose_io_mode": "OFF",
"nmea_baud_rate": "BAUD_9600",
"nmea_ignore_valid_char": 0,
"nmea_in_polarity": "ACTIVE_HIGH",
"nmea_leap_seconds": 0,
"operating_mode": "NORMAL",
"phase_lock_enable": false,
"phase_lock_offset": 0,

(continues on next page)

105

(continued from previous page)
"return_order": "STRONGEST_TO_WEAKEST",
"signal_multiplier": 0.25,
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"sync_pulse_out_angle": 360,
"sync_pulse_out_frequency": 1,
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"sync_pulse_out_pulse_width": 10,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"udp_dest": "10.34.24.163",
"udp_port_imu": 7503,
"udp_port_lidar": 7502,
"udp_profile_imu": "LEGACY",
"udp_profile_lidar": "RNG15_RFL8_NIR8"

}

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:37:41 GMT
Server: nginx

To verify, the user can run GET /api/v1/sensor/config after POST command:

{
"accel_fsr": "NORMAL",
"azimuth_window": [

0,
360000

],
"columns_per_packet": 16,
"gyro_fsr": "NORMAL",
"lidar_mode": "1024x10",
"min_range_threshold_cm": 0,
"multipurpose_io_mode": "OFF",
"nmea_baud_rate": "BAUD_9600",
"nmea_ignore_valid_char": 0,
"nmea_in_polarity": "ACTIVE_HIGH",
"nmea_leap_seconds": 0,
"operating_mode": "NORMAL",
"phase_lock_enable": false,
"phase_lock_offset": 0,
"return_order": "STRONGEST_TO_WEAKEST",
"signal_multiplier": 0.25,
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"sync_pulse_out_angle": 360,
"sync_pulse_out_frequency": 1,
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"sync_pulse_out_pulse_width": 10,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"udp_dest": "10.34.24.163",
"udp_port_imu": 7503,
"udp_port_lidar": 7502,
"udp_profile_imu": "LEGACY",
"udp_profile_lidar": "RNG15_RFL8_NIR8"

(continues on next page)

106

(continued from previous page)
}

107

11.1.10 GET /api/v1/sensor/config/operating_mode

Any configuration parameter can be queried by using a URI with the format /api/v1/sensor/config/
parameter_name.

GET /api/v1/sensor/config/operating_mode HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:37:41 GMT
Server: nginx

"NORMAL"

11.1.11 PUT /api/v1/sensor/config/operating_mode

Any configuration parameter can be set by using a URI with the format /api/v1/sensor/config/
parameter_name.

In this example the operating mode is changed from NORMAL (default) to STANDBY.

Note

After a PUT api/v1/sensor/config or POST api/v1/sensor/config request is received successfully, the
sensor will reinitialize automatically to make the new configuration active, and the config settings
are persisted across power cycles.

PUT /api/v1/sensor/config/operating_mode HTTP/1.1
Host: 192.0.2.123
Content-Type: application/json

"STANDBY"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:37:41 GMT
Server: nginx

108

11.1.12 DELETE /api/v1/sensor/config

Note

This API command resets all sensor configuration to the default state, including static IP address
settings, and restarts the sensor.

DELETE /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 10 Jul 2023 17:12:47 GMT
Server: nginx

11.1.13 GET /api/v1/sensor/metadata

To GET the sensor metadata information.

GET /api/v1/sensor/metadata HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 4009
Content-Type: application/json

{
"beam_intrinsics": {

"beam_altitude_angles": [
20.38, 20.12, 19.79, 19.45, 19.14, 18.85, 18.55, 18.2, 17.86, 17.58, 17.27, 16.93,
16.58, 16.29, 15.98, 15.61, 15.27, 14.97, 14.66, 14.3, 13.96, 13.65, 13.33, 12.97,
12.62, 12.31, 11.98, 11.63, 11.27, 10.96, 10.63, 10.26, 9.91, 9.59, 9.26, 8.89,
8.54, 8.21, 7.87, 7.52, 7.15, 6.82, 6.47, 6.11, 5.76, 5.42, 5.08, 4.73, 4.36, 4.03,
3.66, 3.31, 2.96, 2.62, 2.27, 1.91, 1.55, 1.22, 0.85, 0.51, 0.16, -0.2, -0.55, -0.91,
-1.26, -1.62, -1.96, -2.3, -2.66, -3.02, -3.36, -3.72, -4.07, -4.42, -4.77, -5.11,
-5.46, -5.82, -6.16, -6.49, -6.85, -7.21, -7.55, -7.88, -8.23, -8.59, -8.93, -9.25,
-9.6, -9.96, -10.31, -10.63, -10.96, -11.32, -11.67, -11.97, -12.31, -12.68, -13,
-13.32, -13.64, -14, -14.33, -14.63, -14.96, -15.31, -15.64, -15.94, -16.26,
-16.62, -16.93, -17.22, -17.54, -17.9, -18.22, -18.49, -18.8, -19.16, -19.47,
-19.73, -20.04, -20.39, -20.7, -20.94, -21.25, -21.6, -21.9, -22.14

],
"beam_azimuth_angles": [

4.24, 1.41, -1.42, -4.23, 4.23, 1.41, -1.41, -4.23, 4.23, 1.41, -1.41, -4.21, 4.23,
1.42, -1.4, -4.23, 4.24, 1.41, -1.4, -4.23, 4.24, 1.42, -1.4, -4.22, 4.23, 1.41,
-1.41, -4.22, 4.23, 1.42, -1.4, -4.22, 4.24, 1.41, -1.4, -4.23, 4.23, 1.41, -1.41,
-4.22, 4.23, 1.41, -1.41, -4.23, 4.23, 1.4, -1.42, -4.23, 4.23, 1.41, -1.42, -4.23,
4.23, 1.4, -1.42, -4.24, 4.22, 1.41, -1.43, -4.24, 4.22, 1.4, -1.42, -4.24, 4.22,
1.4, -1.42, -4.23, 4.22, 1.4, -1.4, -4.24, 4.22, 1.4, -1.42, -4.24, 4.22, 1.41,

(continues on next page)

109

(continued from previous page)
-1.41, -4.22, 4.22, 1.39, -1.42, -4.23, 4.22, 1.41, -1.41, -4.22, 4.23, 1.41,
-1.41, -4.23, 4.23, 1.41, -1.41, -4.22, 4.23, 1.41, -1.41, -4.22, 4.22, 1.41,
-1.41, -4.22, 4.23, 1.41, -1.4, -4.23, 4.22, 1.41, -1.41, -4.23, 4.22, 1.4, -1.41,
-4.23, 4.22, 1.4, -1.41, -4.24, 4.22, 1.4, -1.42, -4.24, 4.22, 1.4, -1.42, -4.23

],
"beam_to_lidar_transform": [1, 0, 0, 15.805999755859375, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
"lidar_origin_to_beam_origin_mm": 15.8059998

}
"calibration_status": {

"reflectivity": {
"timestamp": "2022-11-18T20:31:06",
"valid": true

}
},
"config_params": {
"azimuth_window": [

0,
360000

],
"columns_per_packet": 16,
"lidar_mode": "1024x10",
"multipurpose_io_mode": "OFF",
"nmea_baud_rate": "BAUD_9600",
"nmea_ignore_valid_char": 0,
"nmea_in_polarity": "ACTIVE_HIGH",
"nmea_leap_seconds": 0,
"operating_mode": "NORMAL",
"phase_lock_enable": false,
"phase_lock_offset": 0,
"signal_multiplier": 1,
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"sync_pulse_out_angle": 360,
"sync_pulse_out_frequency": 1,
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"sync_pulse_out_pulse_width": 10,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"udp_dest": "169.254.225.4",
"udp_port_imu": 7503,
"udp_port_lidar": 7502,
"udp_profile_imu": "LEGACY",
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL"

},
"imu_intrinsics": {

"imu_to_sensor_transform": [
1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 7.645, 0, 0, 0, 1

]
},
"lidar_data_format": {

"column_window": [
0,

1023
],
"columns_per_frame": 1024,
"columns_per_packet": 16,

(continues on next page)

110

(continued from previous page)
"pixel_shift_by_row": [12, 4, -4, -12, 12,

4, -4, -12, 12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4, -4, -12, 12,
4, -4, -12, 12, 4, -4, -12, 12, 4, -4,
-12, 12, 4, -4, -12, 12, 4, -4, -12, 12,
4, -4, -12

],
"pixels_per_column": 128,
"udp_profile_imu": "LEGACY",
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL"

},

"lidar_intrinsics": {
"lidar_to_sensor_transform": [

-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 38.195, 0, 0, 0, 1
]

},
"sensor_info": {

"build_date": "2023-1-15T15:56:07Z",
"build_rev": "v3.0.0",
"image_rev": "ousteros-image-prod-bootes-v3.0.0+0123456789",
"initialization_id": 390079,
"prod_line": "OS-1-128",
"prod_pn": "860-105010-07",
"prod_sn": "992244000006",
"status": "RUNNING"

}
}

11.2 User Editable Data

A user configurable data field is made available in firmware v2.5 and later.

This field can be used for a number of purposes such as storing specific information about the sensor,
qualifying a sensor, calibration data, or any other information. Please refer to User Data Field section
in the Firmware User Manual for more information.

Additional Information:

Valid values for UED: Empty string or string containing non-binary ASCII and/or Unicode charac-
ters.

Size limit for UED string: 128KB with 1KB = 1024bytes (Total = 131,072 bytes)

111

11.2.1 GET /api/v1/user/data

Retrieve the current value of ‘user-data-field’, "" is returned by default.

GET /api/v1/user/data HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 15
Content-Type: application/json
Date: Thu, 01 Jan 1970 01:40:23 GMT
Server: nginx

""

11.2.2 PUT /api/v1/user/data

Puts a “content” in the user data field. In the example shown below we will use “Ouster sensor” as
the content to be put in the user data field.

Default data policy for PUT request on user editable data is clear_on_config_delete. If you would like to
persist the value in the data field please see PUT /api/v1/user/data?policy=keep_on_config_delete.

PUT /api/v1/user/data HTTP/1.1
Host: 192.0.2.123

"Ouster sensor"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 01:39:16 GMT
Server: nginx

To verify: Run GET /api/v1/user/data

GET /api/v1/user/data HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 15
Content-Type: application/json
Date: Thu, 01 Jan 1970 01:05:14 GMT
Server: nginx

"Ouster sensor"

112

11.2.3 DELETE /api/v1/user/data

Deletes the current value (“content”) in the ‘user-data-field’.

DELETE /api/v1/user/data HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 01:05:32 GMT
Server: nginx

To verify: Run GET /api/v1/user/data

GET /api/v1/user/data HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 2
Content-Type: application/json
Date: Thu, 01 Jan 1970 01:05:14 GMT
Server: nginx

""

11.2.4 Optional Parameters – data policy

The policy key maps to the active policy as applied with PUT api/v1/user/data?policy=<policy_str>.

<policy_str> have the following options available:

clear_on_config_delete by default

keep_on_config_delete

Note

Data policy has no effect on the content of the User Editable Data field.

113

PUT /api/v1/user/data?policy=clear_on_config_delete

PUT /api/v1/user/data?policy=clear_on_config_delete HTTP/1.1
Host: 192.0.2.123

"Ouster sensor"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:43:08 GMT
Server: nginx

PUT /api/v1/user/data?policy=keep_on_config_delete

When keep_on_config_delete has been applied, the data in the user editable data field is persisted re-
gardless of any sensor configuration resets or shutdown. If the user needs to reset this field then
please run DELETE /api/v1/user/data.

PUT /api/v1/user/data?policy=keep_on_config_delete HTTP/1.1
Host: 192.0.2.123

"Ouster Sensor"

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 00:43:08 GMT
Server: nginx

11.2.5 Optional Parameters – include_metadata

Same as nominal GET but returns a JSON dictionary of the form { "value": str, "policy": str }where
the value key maps to the nominal value returned by GET with no arguments.

Note

include_metadata has no effect on the User Editable Data field.

This feature lets user to query the user editable data field to get policy and valuewhen include_metadata
is set to true/1 and only the value when include_matadata is set to false/0

114

GET /api/v1/user/data?include_metadata=true

Returns a JSON dictionary of the form { “value”: str, “policy”: str }.

115

GET /api/v1/user/data?include_metadata=true HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 61
Content-Type: application/json
Date: Thu, 01 Jan 1970 00:20:48 GMT
Server: nginx

{
"policy": "keep_on_config_delete",
"value": "ouster sensor"

}

GET /api/v1/user/data?include_metadata=false

Returns only the value of the user data.

GET /api/v1/user/data?include_metadata=false HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 15
Content-Type: application/json
Date: Thu, 01 Jan 1970 00:21:41 GMT
Server: nginx

"Ouster sensor"

11.3 System

11.3.1 POST /api/v1/system/restart

Restarts the sensor. This command is present in firmware version v3.1 and newer.

Warning

Please contact Ouster support if you find the need to use this command.

POST /api/v1/system/restart HTTP/1.1
Host: 192.0.2.123

116

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 14 Mar 2024 20:33:01 GMT
Server: nginx

11.3.2 GET /api/v1/system/firmware

To GET the firmware version of the sensor.

GET /api/v1/system/firmware HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 82
Content-Type: application/json
Date: Thu, 01 Jan 1970 00:27:54 GMT
Server: nginx

{
"commit_pending": false,
"fw": "ousteros-image-prod-aries-v2.5.2+20230714195410"

}

>json string fw Running firmware image name and version.

11.3.3 POST /api/v1/system/firmware

To update the sensor firmware.

Example:

curl -vH 'content-type: application/octet-stream' --data-binary @../../Downloads/
ousteros-image-prod-aries-v2.5.x+20230607131746.staging.img http://192.0.2.123/api/v1/system/
firmware

Response:

* Trying 192.0.2.123:80...
* TCP_NODELAY set
* Connected to 192.0.2.123 (192.0.2.123) port 80 (#0)
> POST /api/v1/system/firmware HTTP/1.1
> Host: 192.0.2.123
> User-Agent: curl/7.68.0
> Accept: */*
> content-type: application/octet-stream
> Content-Length: 42755180
> Expect: 100-continue
>

(continues on next page)

117

(continued from previous page)
* Mark bundle as not supporting multiuse
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
* Mark bundle as not supporting multiuse
< HTTP/1.1 204 No Content
< Server: nginx
< Date: Wed, 14 Jun 2023 23:38:08 GMT
< Connection: keep-alive
<
* Connection #0 to host 192.0.2.123 left intact

11.3.4 GET /api/v1/system/network

To GET the system network configuration.

GET /api/v1/system/network HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 256
Content-Type: application/json

{
"carrier": true,
"duplex": "full",
"ethaddr": "bc:0f:a7:00:84:17",
"hostname": "192.0.2.123",
"ipv4": {

"link_local": "192.0.2.123/16",
"override": null

},
"ipv6": {

"link_local": "fe80::be0f:a7ff:fe00:8417/64"
},
"speed": 1000,
"speed_override": null

}

>json boolean carrier: State of Ethernet link, true when physical layer is connected.

>json string duplex: Duplex mode of Ethernet link, half or full.

>json string ethaddr: Ethernet hardware (MAC) address.

>json string hostname: Hostname of the sensor, also used when requestingDHCP address and
registering mDNS hostname.

>json object ipv4: See ipv4 object

>json string ipv6.link_local: Link-local IPv6 address.

>json integer speed: Ethernet physical layer speed in Mbps, should be 1000 Mbps.

118

11.3.5 GET /api/v1/system/network/ipv4

To GET the IPv4 network configuration.

GET /api/v1/system/network/ipv4 HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 53
Content-Type: application/json

{
"link_local": "192.0.2.123/16",
"override": null

}

>json string addr: Current global or private IPv4 address.

>json string link_local: Link-local IPv4 address.

>json string override: Static IP override value, this should match addr. This value will be null
when unset and operating in DHCP or link-localmodes.

11.3.6 GET /api/v1/system/network/ipv4/override

To GET the current IPv4 static IP address override.

GET /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 4
Content-Type: application/json

null

>json string Static IP override value, this should match addr. This value will be null when unset
and operating in DHCPmode.

119

11.3.7 PUT /api/v1/system/network/ipv4/override

To override the default dynamic behavior and set a static IP address. Only a valid Unicast IPv4 address
can be specified when using PUT command.

Note

The sensor will reset the network configuration after a short sub second delay (to allow for the
HTTP response to be sent). After this delay the sensor will only be reachable on the newly set IPv4
address.

The sensor needs to be reachable either by link-local or dynamic DHCP configuration or by an
existing static IP override from the host reconfiguring the sensor. The sensor may be reset back
to using DHCP by DELETE ing the sensor configuration.

Warning

If an unreachable network address is set, the sensor will become unreachable. Tools such as avahi-
browse, dns-sd, or mDNS browser can help with finding a sensor on a network. Static IP override
should only be used in special use cases. DHCP configuration is recommended where possible.

120

PUT /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

"192.0.2.231"

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 17
Content-Type: application/json
Date: Thu, 30 Mar 2023 04:30:30 GMT
Server: nginx

"192.0.2.231"

<json string: Static IP override value with subnet mask

>json string: Static IP override value that system will set after a short delay.

Note

Sensor can be accessed on the sensor’s self-assigned link-local IPv4 or IPv6 addresses, in case the
sensor becomes unreachable on the configured network due to amisconfiguration. To discover the
self-assigned link-local IPv4 or IPv6 addresses for a sensor one can use a network sniffer (such as
wireshark) on the same network segment as the sensor.

11.3.8 DELETE /api/v1/system/network/ipv4/override

To delete the static IP override value and return to dynamic configuration (DHCP).

Note

The sensor will reset the network configuration after a short sub second delay (to allow for the
HTTP response to be sent). After this delay the sensor will only be reachable on the newly set IPv4
address.

The sensor may be unreachable for several seconds while a link-local lease is obtained from the
network or client machine.

DELETE /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Thu, 01 Jan 1970 19:12:15 GMT
Server: nginx

121

11.3.9 GET /api/v1/system/network/speed_override

Two options null (default) and 100.

Note

Only valid for sensors with automotive ethernet (T1).

Example

GET /api/v1/system/network/speed_override HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 4
Content-Type: application/json
Date: Thu, 28 Apr 2022 17:48:51 GMT
Server: nginx

null

11.3.10 PUT /api/v1/system/network/speed_override

Note

Only valid for sensors with automotive ethernet (T1).

Warning

Only run this command if you have the ability to configure your networking hardware between
1000BASE-T1 and 100BASE-T1. If you do not have the configuration option available, you will no
longer be able to communicate with the sensor. Please refer to an Example 100Base-T1 Connector.

Two options 1000 (default) and 100. However, user can only use PUT command to set
speed-override to 100. In order to revert back to 1000 (default), please run the DELETE
/api/v1/system/network/speed_override.

Example

PUT /api/v1/system/network/speed_override HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

(continues on next page)

122

https://www.manualslib.com/manual/2882982/Technica-Engineering-Matenet-100base-T1.html?page=14#manual

(continued from previous page)

100

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 3
Content-Type: application/json
Date: Tue, 18 Jul 2023 19:34:27 GMT
Server: nginx

100

11.3.11 DELETE /api/v1/system/network/speed_override

Note

Only valid for sensors with automotive ethernet (T1).

To reset it back to default i.e.., 1000

DELETE /api/v1/system/network/speed_override HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Tue, 18 Jul 2023 19:37:52 GMT
Server: nginx

11.4 Time

11.4.1 GET /api/v1/time

To GET the system time configuration for all timing components of the sensor.

GET /api/v1/time HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 2484
Content-Type: application/json

{
(continues on next page)

123

(continued from previous page)
"ptp": {

"current_data_set": {
"mean_path_delay": 0.0,
"offset_from_master": 0.0,
"steps_removed": 0

},
"parent_data_set": {

"gm_clock_accuracy": 254,
"gm_clock_class": 255,
"gm_offset_scaled_log_variance": 65535,
"grandmaster_identity": "bc0fa7.fffe.008417",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "bc0fa7.fffe.008417-0",
"parent_stats": 0

},
"port_data_set": {

"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.008417-1",
"port_state": "LISTENING",
"version_number": 2

},
"profile": "default",
"time_properties_data_set": {

"current_utc_offset": 37,
"current_utc_offset_valid": 0,
"frequency_traceable": 0,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 160,
"time_traceable": 0

},
"time_status_np": {

"cumulative_scaled_rate_offset": 0.0,
"gm_identity": "bc0fa7.fffe.008417",
"gm_present": false,
"gm_time_base_indicator": 0,
"ingress_time": 0,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": 0,
"scaled_last_gm_phase_change": 0

}
},
"sensor": {

"multipurpose_io": {
(continues on next page)

124

(continued from previous page)
"mode": "OFF",
"nmea": {

"baud_rate": "BAUD_9600",
"diagnostics": {

"decoding": {
"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {

"bit_count": 1,
"bit_count_unfiltered": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {

"angle_deg": 360,
"frequency_hz": 1,
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

}
},
"sync_pulse_in": {

"diagnostics": {
"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"timestamp": {

"mode": "TIME_FROM_INTERNAL_OSC",
"time": 297.397987312,
"time_options": {

"internal_osc": 297,
"ptp_1588": 1651197874,
"sync_pulse_in": 1

}
}

},
"system": {

"monotonic": 30131.822811617,
"realtime": 1651197874.3271277,
"tracking": {

"frequency": -9.558,
"last_offset": 0.0,

(continues on next page)

125

(continued from previous page)
"leap_status": "not synchronised",
"ref_time_utc": 0.0,
"reference_id": "00000000",
"remote_host": "",
"residual_frequency": 0.0,
"rms_offset": 0.0,
"root_delay": 1.0,
"root_dispersion": 1.0,
"skew": 0.0,
"stratum": 0,
"system_time_offset": 1e-09,
"update_interval": 0.0

}
}

}

>json string: See sub objects for details.

11.4.2 GET /api/v1/time/sensor

To GET the sensor time information.

GET /api/v1/time/sensor HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 775
Content-Type: application/json

{
"multipurpose_io": {

"mode": "OFF",
"nmea": {

"baud_rate": "BAUD_9600",
"diagnostics": {

"decoding": {
"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {

"bit_count": 1,
"bit_count_unfiltered": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,

(continues on next page)

126

(continued from previous page)
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {

"angle_deg": 360,
"frequency_hz": 1,
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

}
},
"sync_pulse_in": {

"diagnostics": {
"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"timestamp": {

"mode": "TIME_FROM_INTERNAL_OSC",
"time": 376.510445056,
"time_options": {

"internal_osc": 376,
"ptp_1588": 1651197953,
"sync_pulse_in": 1

}
}

}

Description: Returns JSON-formatted sensor timing configuration and status of udp timestamp,
sync_pulse_in, and multipurpose_io. For more information on these parameters refer to the GET
/api/v1/time HTTP API command.

11.4.3 GET /api/v1/time/system

To GET the operating system time status. These values relate to the sensor operating system clocks,
and not clocks related to hardware timestamp data from the lidar sensor.

GET /api/v1/time/system HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 389
Content-Type: application/json

{
"monotonic": 30348.898799855,
"realtime": 1651198091.4031146,
"tracking": {

(continues on next page)

127

(continued from previous page)
"frequency": -9.558,
"last_offset": 0.0,
"leap_status": "not synchronised",
"ref_time_utc": 0.0,
"reference_id": "00000000",
"remote_host": "",
"residual_frequency": 0.0,
"rms_offset": 0.0,
"root_delay": 1.0,
"root_dispersion": 1.0,
"skew": 0.0,
"stratum": 0,
"system_time_offset": 3e-09,
"update_interval": 0.0

}
}

>json float monotonic: Monotonic time of operating system. This timestamp never counts
backwards and is the time since boot in seconds.

>json float realtime: Time in seconds since the Unix epoch, should match wall time if synchro-
nized with an external time source.

>json object tracking: Operating system time synchronization tracking status. See chronyc
tracking documentation for more information.

System ``tracking`` fields of interest:

rms_offset: Long-term average of the offset value.

system_time_offset: Time delta (in seconds) between the estimate of the operating system
time and the current true time.

last_offset: Estimated local offset on the last clock update.

ref_time_utc: UTC Time at which the last measurement from the reference source was pro-
cessed.

remote_host: This is either ptp if the system is synchronizing to aPTP time source or the address
of a remote NTP server the system has selected if the sensor is connected to the Internet.

11.4.4 GET /api/v1/time/ptp

To GET the status of the PTP time synchronization daemon.

Note

See the IEEE 1588-2008 standard for more details on the standard management messages.

GET /api/v1/time/ptp HTTP/1.1
Host: 192.0.2.123

128

https://chrony.tuxfamily.org/manual.html#tracking-command
https://chrony.tuxfamily.org/manual.html#tracking-command
https://ieeexplore.ieee.org/document/4579760

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 1287
Content-Type: application/json

{
"current_data_set": {

"mean_path_delay": 0.0,
"offset_from_master": 0.0,
"steps_removed": 0

},
"parent_data_set": {

"gm_clock_accuracy": 254,
"gm_clock_class": 255,
"gm_offset_scaled_log_variance": 65535,
"grandmaster_identity": "bc0fa7.fffe.008417",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "bc0fa7.fffe.008417-0",
"parent_stats": 0

},
"port_data_set": {

"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.008417-1",
"port_state": "LISTENING",
"version_number": 2

},
"profile": "default",
"time_properties_data_set": {

"current_utc_offset": 37,
"current_utc_offset_valid": 0,
"frequency_traceable": 0,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 160,
"time_traceable": 0

},
"time_status_np": {

"cumulative_scaled_rate_offset": 0.0,
"gm_identity": "bc0fa7.fffe.008417",
"gm_present": false,
"gm_time_base_indicator": 0,
"ingress_time": 0,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": 0,
"scaled_last_gm_phase_change": 0

(continues on next page)

129

(continued from previous page)
}

}

>json object current_data_set: Result of the PMC GET CURRENT_DATA_SET command.

>json object parent_data_set: Result of the PMC GET PARENT_DATA_SET command.

>json object port_data_set: Result of the PMC GET PORT_DATA_SET command.

>json object time_properties_data_set: Result of the PMC GET TIME_PROPERTIES_DATA_SET com-
mand.

>json object time_status_np: Result of the PMC GET TIME_STATUS_NP command. This is a linux-
ptp non-portable command.

Fields of interest:

current_data_set.offset_from_master: Offset from master time source in nanoseconds as
calculated during the last update from master.

parent_data_set.grandmaster_identity: This should match the local grandmaster clock. If
this displays the sensor’s clock identity (derived from Ethernet hardware address) then this in-
dicates the sensor is not properly synchronized to a grandmaster.

parent_data_set: Various information about the selected master clock.

port_data_set.port_state: This value will be SLAVEwhen a remotemaster clock is selected. See
parent_data_set for selected master clock.

port_data_set: Local sensor PTP configuration values. Grandmaster clock needs to match
these for proper time synchronization.

time_properties_data_set: PTP properties as given by master clock.

time_status_np.gm_identity: Selected grandmaster clock identity.

time_status_np.gm_present: True when grandmaster has been detected. This may stay true
even if grandmaster goes off-line. Use port_data_set.port_state to determine up-to-date syn-
chronization status. When this is false then the local clock is selected.

time_status_np.ingress_time: Indicates when the last PTP message was received. Units are
in nanoseconds.

time_status_np: LinuxPTP specific diagnostic values. TheRedHatmanual provides somemore
information on these fields

11.4.5 GET /api/v1/time/ptp/profile

To GET the active PTP profile of the Ouster sensor.

GET /api/v1/time/ptp/profile HTTP/1.1
Host: 192.0.2.123

130

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-using_the_ptp_management_client

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 9
Content-Type: application/json

"default"

>json string: Active PTP profile.

11.4.6 PUT /api/v1/time/ptp/profile

To change the PTP profile of the Ouster sensor.

PUT /api/v1/time/ptp/profile HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

"gptp"

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 6
Content-Type: application/json
Date: Thu, 28 Apr 2022 18:11:36 GMT
Server: nginx

"gptp"

<json string: PTP profile to be activated, valid options are "", "default", "gptp", "automotive-slave"
and "default-l2-relaxed".

Note

"" and "default" are the same.

11.5 Alerts, Diagnostics and Telemetry

In order to correlate the alerts with sensor telemetry data, the realtime attribute that is returned in the
HTTPAPI /api/v1/time/system call should be the time reference to use in such toolswhen timestamping
telemetry data, since that will always be the time that is used by the sensor to timestamp the alerts,
irrespective of the actual timing source, such as: TIME_FROM_INTERNAL_OSC, TIME_FROM_SYNC_PULSE_IN, or
TIME_FROM_PTP_1588. This should be sufficient for tools and applications that do not require the time to
have an absolute nature, i.e. where only relative time is needed.

131

11.5.1 GET /api/v1/sensor/alerts

To GET the sensor alerts.

GET /api/v1/sensor/alerts HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 1983
Content-Type: application/json

{
"active": [

{
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 1,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided lidar data port;

check that udp_dest and udp_port_lidar configured on the sensor matches
client IP and port. This Alert may occur on sensor startup if the
client is not listening at that time.",

"msg_verbose": "Failed to send lidar UDP data to destination host 169.254.225.4:7502",
"realtime": "1651197616274601728"

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 0,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided IMU data port;

check that udp_dest and udp_port_imu configured on the sensor matches
client IP and port. This Alert may occur on sensor startup if the
client is not listening at that time.",

"msg_verbose": "Failed to send imu UDP data to destination host 169.254.225.4:7503",
"realtime": "1651197615284695040"

}
],
"log": [

{
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 0,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided IMU data port;

check that udp_dest and udp_port_imu configured on the sensor matches
client IP and port. This Alert may occur on sensor startup if the
client is not listening at that time.",

"msg_verbose": "Failed to send imu UDP data to destination host 169.254.225.4:7503",
"realtime": "1651197615284695040"

(continues on next page)

132

(continued from previous page)
},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 1,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided lidar data port;

check that udp_dest and udp_port_lidar configured on the sensor matches
client IP and port. This Alert may occur on sensor startup if the
client is not listening at that time.",

"msg_verbose": "Failed to send lidar UDP data to destination host 169.254.225.4:7502",
"realtime": "1651197616274601728"

}
],
"next_cursor": 2

}

Description: Returns JSON-formatted sensor diagnostic information.

Two lists will be returned, an active list and a log list. The active list contains a list of currently active
events. The number of events in the active event list is unlimited.

The log list will contain all alert trigger and clear events. An alert-clear event has the same attributes
and values as its corresponding trigger event, apart from the realtime and cursor attributes which will
have increased, since an alert-clear event will always be received after an alert-trigger event. The log
list has a length limit of 32 events in the form of a FIFO (First in First Out) queue. When the log list
length limit is reached and a new event is added the oldest event is deleted.

In addition to the active and log lists, GET /api/v1/sensor/alerts also returns a next_cursor field.
Every alert event has a cursor attribute, which increments for every alert event logged. This can be
used to track the alert activity that has been viewed and reducemessage bandwidth. To do this, users
are recommended to save the next_cursor field when calling GET /api/v1/sensor/alerts and then use
that value as the cursor argument on the next GET /api/v1/sensor/alerts call to fetch only new log
entries.

A valid value formode is either summary or default.

Additional Information:

The cursorwill wrap at 2^32 entries. It is important to understand the behavior during the wrap case,
since this may lead to some unexpected consequences:

If cursor < (next_cursor - 32) % 2^32 then some entries may be filtered. For instance if cursor
=0 and next_cursor =0 no entries will be reported immediately after cursor wrap, even though
the log contains 32 entries, where submitting cursor =4294967264 (next_cursor - 32) % 2^32
will return all logged values.

If cursor > next_cursor all 32 entries will be reported.

The recommended approach to using the interface is to always base queries on the previous value of
next_cursor.

133

Alerts Example

Valid uses of GET /api/v1/sensor/alerts:

Example: Calling alerts with cursor =1

GET /api/v1/sensor/alerts?cursor=1

Example: Calling alerts withmode =summary

GET /api/v1/sensor/alerts?mode=summary

Example: Calling alerts with cursor =2 andmode =summary

GET /api/v1/sensor/alerts?cursor=2&mode=summary

134

Note

When utilizing HTTP Endpoints, the sequence in which the cursor and mode arguments are pro-
vided for the GET /api/v1/sensor/alerts command is inconsequential.

The alerts reported have the following format:

{
"category": "Category of the alert: e.g. OVERTEMP, UDP_TRANSMISSION",
"level": "Level of alert: e.g. NOTICE, WARNING, ERROR",
"realtime": "The timestamp of the alert in nanoseconds",
"active": "Whether the alert is active or not: <true/false>",
"msg": "A description of the alert",
"cursor": "The sequential number of the alert, starting from 0 counting up",
"id": "The hexadecimal identification code of the alert: e.g. 0x01000017",
"msg_verbose": "Any additional verbose description that the alert may present"

}

11.5.2 GET /api/v1/sensor/alerts?cursor=1

To GET the sensor alerts with cursor=1.

GET /api/v1/sensor/alerts?cursor=1 HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 43
Content-Type: application/json
Date: Thu, 21 Mar 2024 00:01:55 GMT
Server: nginx

{
"active": [],
"log": [],
"next_cursor": 0

}

11.5.3 GET /api/v1/sensor/alerts?mode=summary

To GET the sensor alerts with mode=summary.

GET /api/v1/sensor/alerts?mode=summary HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 351

(continues on next page)

135

(continued from previous page)
Content-Type: application/json
Date: Thu, 21 Mar 2024 00:11:50 GMT
Server: nginx

{
"active": [

{
"cursor": 1,
"id": "0x01000015",
"realtime": "1710979334555586816"

},
{

"cursor": 0,
"id": "0x01000018",
"realtime": "1710979333553802752"

}
],
"log": [

{
"active": true,
"cursor": 0,
"id": "0x01000018",
"realtime": "1710979333553802752"

},
{

"active": true,
"cursor": 1,
"id": "0x01000015",
"realtime": "1710979334555586816"

}
],
"next_cursor": 2

}

11.5.4 GET /api/v1/sensor/alerts?cursor=2&mode=summary

To GET the sensor alerts with cursor=2 and mode=summary.

GET /api/v1/sensor/alerts?cursor=2&mode=summary HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 1011
Content-Type: application/json
Date: Thu, 21 Mar 2024 00:21:34 GMT
Server: nginx

{
"active": [

{
(continues on next page)

136

(continued from previous page)
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 1,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided lidar data port;
check that udp_dest and udp_port_lidar configured on the sensor matches client IP and port.
This Alert may occur on sensor startup if the client is not listening at that time.",
"msg_verbose": "Failed to send lidar UDP data to destination host 10.32.224.28:7502",
"realtime": "1710979334555586816"

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 0,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided IMU data port;
check that udp_dest and udp_port_imu configured on the sensor matches client IP and port.
This Alert may occur on sensor startup if the client is not listening at that time.",
"msg_verbose": "Failed to send imu UDP data to destination host 10.32.224.28:7503",
"realtime": "1710979333553802752"

}
],
"log": [],
"next_cursor": 2

}

11.5.5 GET /api/v1/diagnostics/dump

To GET the diagnostics files of the sensor. This file should be sent to Ouster support if requested, and
is not readable by the user.

GET /api/v1/diagnostics/dump HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Type: application/octet-stream
Transfer-Encoding: chunked
content-disposition: attachment; filename="192.0.2.123_diagnostics-dump_b7d348c2

-c763-11ec-accf-bc0fa7008417.bin"

+---+
| NOTE: binary data not shown in terminal |
+---+

137

11.5.6 GET /api/v1/sensor/telemetry

To GET the sensor telemetry information.

GET /api/v1/sensor/telemetry HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 150
Content-Type: application/json

{
"input_current_ma": 644,
"input_voltage_mv": 23624,
"internal_temperature_deg_c": 48,
"phase_lock_status": "DISABLED",
"timestamp_ns": 2093396806056

}

Description: Returns a JSON-formatted response that provides sensor system state information.
This includes the Timestamp in ns (Nanoseconds) at which the information was collected, Lidar Input
Voltage in mv (Millivolt), Lidar Input Current in ma (Milliamp), Internal Temperature of the sensor in
ºC (Degree Celsius) and Phase Lock status, which can be LOCKED, LOST, or DISABLED..

Internal temperature can only be measured with Rev 06 and above sensors. Phase lock output will
not indicate loss of lock if the time synchronization is lost.

138

12 TCP API Guide (Deprecated)

Warning

TCP API has now been deprecated in FW 3.1. Refer to HTTP API Guide Section instead.

Please contact Ouster Support if you need any support or have any questions regarding this transition.

139

https://ouster.com/tech-support

13 API Changelog

13.1 Firmware v3.1.0

Date: May 2024

Added

Add config parameter for min_range_threshold_cm (Refer to min_range_threshold_cm for
more information).

Add config parameter for return_order (Refer to return_order for more information).

Add config parameter for Delete Config (Refer to DELETE /api/v1/sensor/config for more
information).

Add config parameter forPOST /api/v1/system/restart to restart sensor or reinitialize a sen-
sor.

Add config parameter for User Editable Data section, which can be used for a number of
purposes such as storing specific information about the sensor, qualifying a sensor, cali-
bration data, or any other information.

Add config parameter for GET /api/v1/sensor/metadata/imu_data_format. User can get
imu_data_format and POST config to change gyro_fsr and accel_fsr from NORMAL to EXTENDED.

Removed

TCP API has now been DEPRECATED in FW 3.1. Please refer to HTTP API Reference Guide
section instead.

LEGACY Data packet profile has been DEPRECATED, please refer to Lidar Data Packet
Format section of the Firmware User Manual for more information.

Fixed

Fixed bug in GET /api/v1/sensor/alerts API.

13.2 Firmware v3.0.1

Date: February 2023

Added

New HTTP Command to configure speed override (Refer to System)

140

13.3 Firmware v3.0.0

Date: January 2023

Fixed

Bug in keep-alive behavior for HTTP 1.1.

141

14 Troubleshooting

14.1 Sensor Homepage and HTTP Server

The sensor HTTP server page http://os-991900123456.local/ has information about the sensor sys-
tem information, sensor status, firmware, diagnostics, configuration and API documentation. To learn
more aboutWebUI and its use to troubleshoot the sensor, please see the SensorWeb Interface portion
of this user manual.

14.2 Networking

Many initial problems with the sensor are associated with it not properly being assigned an IP address
by a network switch or DHCP server on a client computer. Check your networking settings, the steps
in What’s in the box, and that all wires are firmly connected if you suspect this problem. Note that
if the sensor is not connected via gigabit Ethernet, it will stop sending data and will output an error
code if it fails to achieve a 1000 Mb/s+ full duplex link. Please see the Networking Guide for detailed
guidance on network setup.

14.3 Using Latest Firmware

Upgrading to the latest firmware can often resolve issues found in earlier firmware. The latest firmware
is always found at Ouster Downloads. Our Support team is best suited to be able to help you if you are
running the latest firmware. Please refer to the Updating Firmware section to learn more on how to
update firmware.

Note

Please contact our Field Application Teamandwe can answer your questions and provide guidance
for achieving proper operations.

142

http://os-991900123456.local/
https://ouster.com/downloads/
https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.atlassian.net/servicedesk/customer/portal/8

14.4 Alerts and Errors

The sensor provides alerts and error messages that can be used to help diagnose the sensor. These
Alerts are accessible through the diagnostics tab on the sensor homepage. Alternately, users can
query the sensor via the HTTP endpoint GET /api/v1/sensor/alerts.

An alert gets triggered when its trigger condition is met and is cleared when the respective trigger
condition no longer exists.

GET /api/v1/sensor/alerts returns two lists, an active list and a log list. The active list will contain
alert-trigger events for alerts that are currently active. An alert-trigger event will by definition always
have its active attribute set to true. There is no limit on the number of alert-trigger events that are
displayed in the active event list. All currently active alert-trigger eventswill be displayed in theactive
event list.

The log list will contain all current and past alert-trigger and alert-clear events. An alert-clear event
will by definition have the exact same attributes and attribute values as its corresponding trigger
event, with the exception of the realtime and cursor attributes which should have higher values, since
an alert-clear event will always be received after an alert-trigger event. The log list has a length limit
of 32 events with the oldest events automatically removed from the log list once a new event needs
to be added to the log list and the log list length limit is reached, essentially acting as a FIFO (First In
First Out) queue.

In addition to the active and log lists,GET /api/v1/sensor/alerts also returns anext_cursor field. Every
alert event has a cursor attribute, which increments for every alert event logged. This can be used to
track the alert activity that has been viewed and reduce message bandwidth. To do this, users are
recommended to save the next_cursor field when calling GET /api/v1/sensor/alerts and then use that
value as the START_CURSOR argument on the next GET /api/v1/sensor/alerts call to fetch only new log
entries.

A valid value formode is either summary or default.

Additional Information:

The cursorwill wrap at 2^32 entries. It is important to understand the behavior during the wrap case,
since this may lead to some unexpected consequences:

If cursor < (next_cursor - 32) % 2^32 then some entries may be filtered. For instance if cursor
=0 and next_cursor =0 no entries will be reported immediately after cursor wrap, even though
the log contains 32 entries, where submitting cursor =4294967264 (next_cursor - 32) % 2^32
will return all logged values.

If cursor > next_cursor all 32 entries will be reported.

143

14.4.1 Alerts Example

Valid uses of GET /api/v1/sensor/alerts:

Example: Calling alerts with cursor =1

GET /api/v1/sensor/alerts?cursor=1

Example: Calling alerts withmode =summary

GET /api/v1/sensor/alerts?mode=summary

Example: Calling alerts with cursor =2 andmode =summary

GET /api/v1/sensor/alerts?cursor=2&mode=summary

Note

When utilizing HTTP Endpoints, the sequence in which the cursor and mode arguments are pro-
vided for the GET /api/v1/sensor/alerts command is inconsequential.

The recommended approach to using the interface is to always base queries on the previous value of
next_cursor.

If the watchdog is triggered, an alert code will be appended to the end of the response. The sensor
has a limited-size buffer that will record the first few alerts detected by the sensor.

The full list of possible alerts and error messages can be found in Alerts and Errors.

The alerts reported have the following format:

{
"category": "Category of the alert: e.g. OVERTEMP, UDP_TRANSMISSION",
"level": "Level of alert: e.g. NOTICE, WARNING, ERROR",
"realtime": "The timestamp of the alert in nanoseconds",
"active": "Whether the alert was active or not at the time of this log: <true/false>",
"msg": "A description of the alert",
"cursor": "The sequential number of the alert, starting from 0 counting up",
"id": "The hexadecimal identification code of the alert: e.g. 0x01000017",
"msg_verbose": "Any additional verbose description that the alert may present"

}

Example showing active and logged forced temperature sensor failures occurring at timestamps
1569712873477772800, 1569712879991844096, 1569712884968876544 (nanoseconds).

The first logged error then resolves itself at 1569713260229536000.

144

The example has been JSON formatted:

{
"active": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 2,
"id": "0x01000002",
"msg_verbose": ""

}
],
"next_cursor": 4,
"log": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712873477772800",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 0,
"id": "0x01000000",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor":2 ,
"id": "0x01000002",

(continues on next page)

145

(continued from previous page)
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569713260229536000",
"active": false,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 3,
"id": "0x01000000",
"msg_verbose": ""

}
]

}

Note

Please contact our Field Application Teamandwe can answer your questions and provide guidance
for achieving proper operations.

146

https://ouster.atlassian.net/servicedesk/customer/portal/8

14.4.2 Table of All Alerts and Errors

Possible alerts and errors that the sensor can provide are listed below. Where appropriate, the mes-
sage from the sensor aims to help the user diagnose and fix the issue themselves.

Note

Please note that if the recommended action does not clear the ALERT and the issue persists, Users
are encouraged to update to the latest FWversion. If that does notmitigate the issue, please collect
the diagnostics file from the sensor Web UI and contact Ouster support.

Table14.1: Alerts and Errors

ID Category Level Alert Message Sensor Action

0x01000000 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000001 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000002 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000003 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000004 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

continues on next page

147

https://ouster.com/tech-support
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000005 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000006 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000007 UNDERTEMP Error Unit internal temperature too
low; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000008 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x01000009 OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x0100000A OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x0100000B OVERTEMP Error Unit internal temperature too
high; Unit is shutting down.
Please refer to Thermal inte-
gration guide for heat sinking
requirements.

SHUTDOWN

0x0100000C INTERNAL_COMM Warning Unit has experienced an inter-
nal COMM warning. If the is-
sue persists, update to the lat-
est FW. Contact Ouster Sup-
port if the above steps do not
resolve the alert with Diagnos-
tic file.

No Action

continues on next page

148

https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100000D INTERNAL_COMM Warning Unit has experienced an inter-
nal COMM warning. If the is-
sue persists, update to the lat-
est FW. Contact Ouster Sup-
port if the above steps do not
resolve the alert with Diagnos-
tic file.

No Action

0x0100000E SHOT_LIMITING Notice Temperature is high enough
where shot limiting may be en-
gaged; Please refer to Thermal
integration guide for heat sink-
ing requirements.

No Action

0x0100000F SHOT_LIMITING Warning Shot limiting mode is active.
Laser power is partially atten-
uated; Please refer to Thermal
integration guide for heat sink-
ing requirements.

No Action

0x01000010 INTERNAL_FW Error Unit has experienced an inter-
nal error; If the issue persists,
update to the latest FW. Con-
tact Ouster Support with Diag-
nostic file, if the above steps
do not resolve the alert.

No Action

0x01000011 ETHER-
NET_LINK_BAD

Warning Sensor has detected an issue
with the connected ethernet
link. Please check the net-
work setup including the net-
work switch and harnessing
can support 1 Gbps Ethernet.
If you experience no issues
with this Alert active, this alert
can be ignored.

No Action

0x01000012 INTERNAL_COMM Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped. No action is required
from the user to clear theAlert.
If the issue persists on FW up-
date, contact Ouster Support
with diagnostic file.

No Action

continues on next page

149

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/downloads/
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000013 INTERNAL_COMM Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped. No action is required
from the user to clear theAlert.
If the issue persists on FW up-
date, contact Ouster Support
with diagnostic file.

No Action

0x01000014 INTERNAL_COMM Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped. No action is required
from the user to clear theAlert.
If the issue persists on FW up-
date, contact Ouster Support
with diagnostic file.

No Action

0x01000015 UDP_TRANSMISSION Warning Client machine announced
it is not reachable on the
provided lidar data port;
check that udp_dest and
udp_port_lidar configured on
the sensor matches client IP
and port.This Alert may occur
on sensor startup, if the client
is not listening at that time.
If the issue persists, contact
Ouster Support.

No Action

0x01000016 UDP_TRANSMISSION Warning Could not send lidar data UDP
packet to host; check that net-
work is up and the destination
is reachable.

No Action

0x01000017 UDP_TRANSMISSION Warning Received an unknown error
when trying to send lidar data
UDP packet; closing socket.

No Action

0x01000018 UDP_TRANSMISSION Warning Client machine announced it is
not reachable on the provided
IMU data port; check that
udp_dest and udp_port_imu
configured on the sensor
matches client IP and port.

No Action

continues on next page

150

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000019 UDP_TRANSMISSION Warning Could not send IMU UDP
packet to host; check that net-
work is up and the destination
is reachable.

No Action

0x0100001A UDP_TRANSMISSION Warning Received an unknown error
when trying to send IMU UDP
packet; closing socket.

No Action

0x0100001B INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x0100001C INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x0100001D INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x0100001E INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x0100001F INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000020 INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

continues on next page

151

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000021 INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000022 INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000023 INTERNAL_FW Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000024 STARTUP Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000025 INTERNAL_COMM Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000026 INTERNAL_COMM Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

0x01000027 INTERNAL_COMM Error Unit has experienced a startup
error; Unit is shutting down.
Update the Firmware to the
latest version, if the issue per-
sists please contact Ouster
Support.

SHUTDOWN

continues on next page

152

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000028 STARTUP Warning Unit has experienced an inter-
nal warning during startup and
is restarting.

RESTART

0x01000029 STARTUP Warning Unit has experienced an inter-
nal warning during startup and
is restarting.

RESTART

0x0100002A STARTUP Warning Unit has experienced an inter-
nal warning during startup and
is restarting.

RESTART

0x0100002B STARTUP Warning Unit has experienced an inter-
nal warning during startup and
is restarting.

RESTART

0x0100002C STARTUP Warning Unit has experienced an inter-
nal warning during startup and
is restarting.

RESTART

0x0100002D STARTUP Warning Unit has experienced an inter-
nal warning during startup and
is restarting.

RESTART

0x0100002E INPUT_VOLTAGE Warning Input voltage is close to be-
ing too low. Consult the hard-
ware user manual for voltage
requirements. Raise voltage
immediately.

No Action

0x0100002F INPUT_VOLTAGE Error Input voltage is too low. Unit
may shut down if the voltage
drops farther. Consult the
hardware user manual for volt-
age requirements.

SHUTDOWN

0x01000030 INPUT_VOLTAGE Warning Input voltage is close to being
too high. Consult the hard-
ware user manual for voltage
requirements. Lower voltage
immediately.

No Action

0x01000031 INPUT_VOLTAGE Error Input voltage is too high. Unit
may shut down if the voltage
increases farther. Consult the
hardware user manual for volt-
age requirements.

SHUTDOWN

0x01000032 UDP_CONNECT Warning Couldn’t open lidar UDP
socket; please contact Ouster
Support.

No Action

continues on next page

153

https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000033 UDP_CONNECT Warning Couldn’t resolve hostname us-
ing DNS for lidar data; check
network, DNS server, and
udp_dest. If using static IP
override, try setting udp_dest
to an IP address or via auto-
setting.

No Action

0x01000034 UDP_CONNECT Warning Invalid UDP port num-
ber; check network and
udp_port_lidar.

No Action

0x01000035 UDP_CONNECT Warning Couldn’t reach destination
client for lidar data; verify
cabling, network address con-
figuration, and subnet mask if
using static IP override

No Action

0x01000036 UDP_CONNECT Warning Couldn’t open imuUDP socket;
please contact Ouster Sup-
port.

No Action

0x01000037 UDP_CONNECT Warning Couldn’t resolve hostname
using DNS for IMU data; check
network, DNS server, and
udp_dest. If using static IP
override, try setting udp_dest
to an IP address or via auto-
setting.

No Action

0x01000038 UDP_CONNECT Warning Invalid UDP port num-
ber; check network and
udp_port_imu.

No Action

0x01000039 UDP_CONNECT Warning Couldn’t reach destination
client for IMU data; verify
cabling, network address con-
figuration, and subnet mask if
using static IP override

No Action

0x0100003A SHOT_LIMITING Warning Shot limiting mode at maxi-
mum. Sensor shutdown immi-
nent.

No Action

0x0100003B INTERNAL_FW Error Unit has experienced a startup
error; Unit is in Error Stopped
(Shutdown) state. Please con-
tact Ouster Support.

SHUTDOWN

continues on next page

154

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100003C INTERNAL_FAULT Error Internal fault detected; Unit
will restart to attempt recov-
ery. If the issue persists, up-
date Firmware to the latest
version. Contact Ouster Sup-
port if the above steps don’t
resolve the Alert.

RESTART

0x0100003D INTERNAL_FAULT Error Internal fault detected; unit
will restart to attempt recov-
ery. If the issue persists, up-
date Firmware to the latest
version. Contact Ouster Sup-
port if the above steps don’t
resolve the Alert.

RESTART

0x0100003E INTERNAL_FAULT Error Internal fault detected; unit
will restart to attempt recov-
ery. If the issue persists, up-
date Firmware to the latest
version. Contact Ouster Sup-
port if the above steps don’t
resolve the Alert.

RESTART

0x0100003F INTERNAL_COMM Error Unit has experienced an inter-
nal COMM error; Unit is in Er-
ror Stopped(Shutdown) state.
Please contact Ouster Sup-
port.

SHUTDOWN

0x01000040 INTERNAL_FAULT Error Unit has experienced an inter-
nal COMM error; Unit is in Er-
ror Stopped(Shutdown) state.
Please contact Ouster Sup-
port.

SHUTDOWN

0x01000041 INTERNAL_COMM Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped.

No Action

0x01000042 INTERNAL_COMM Error Unit has experienced an inter-
nal COMM error; please con-
tact Ouster Support.

No Action

0x01000043 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

continues on next page

155

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000044 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x01000045 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x01000046 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x01000047 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x01000048 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x01000049 INTERNAL_FW Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x0100004A STARTUP Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x0100004B STARTUP Error Unit has experienced a startup
error; please contact Ouster
Support.

SHUTDOWN

0x0100004C INTERNAL_FAULT Error Internal fault detected; unit
going to error stop state.

SHUTDOWN

0x0100004D INTERNAL_FAULT Error Internal fault detected; unit
going to error stop state.

SHUTDOWN

0x0100004E WARMUP_ISSUE Warning Sensor warmup process is
taking longer than expected;
please ensure sensor is
thermally constrained per
requirements.

RESTART

0x0100004F WARMUP_ISSUE Warning Sensor warmup process is
taking longer than expected;
please ensure sensor is
thermally constrained per
requirements.

RESTART

continues on next page

156

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000050 MOTOR_CONTROL Warning The phase lock offset error
has exceeded the threshold.
Check that the time source
is accurate and the reduce
the movement of the sensor
including mechanical move-
ment, shock, or vibration.

No Action

0x01000051 MOTOR_CONTROL Error The phase lock control failed to
achieve a lock multiple times;
Check that the time source is
accurate.

No Action

0x01000052 CONFIG Error Configuration value is invalid
or out of bounds. Unit is shut-
ting down. Try resetting the
sensor configuration.

SHUTDOWN

0x01000053 WARMUP_ISSUE Error Sensor warmup process has
failed. Unit is shutting down.
Check the sensor operating
conditions are within operat-
ing bounds.

SHUTDOWN

0x01000054 INTERNAL_FAULT Notice Unexpected hardware config-
uration detected. Please con-
tact Ouster Support.

No Action

0x01000055 UDP_TRANSMISSION Warning Unit has experienced a packet
drop rate above normal
threshold. Please check that
the network has at least 1000
Mbps connection. Common
causes of this notice may
be 100 or 10 Mbps network
connections.

No Action

0x01000056 INTERNAL_FAULT Error Internal fault detected; unit
will restart to attempt recov-
ery.

RESTART

0x01000057 OVERTEMP Warning Sensor temperature is too
high. Sensor could have
degraded range performance.

No Action

0x01000058 OVERTEMP Error Sensor temperature is too
high; unit going to error stop
state (Shutdown).

SHUTDOWN

continues on next page

157

https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000059 INTERNAL_FAULT Warning Internal fault detected; unit
will restart to attempt recov-
ery.

RESTART

0x0100005A INTERNAL_FAULT Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped. Check sensor operat-
ing conditions.

No Action

0x0100005B INTERNAL_FAULT Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped. Check sensor operat-
ing conditions.

No Action

0x0100005C INTERNAL_FAULT Warning Unit has experienced an in-
ternal COMM warning: some
measurements may have been
skipped. Check sensor operat-
ing conditions.

No Action

0x0100005D INTERNAL_FAULT Warning Internal fault detected; unit
will restart to attempt recov-
ery. If the issue persists,
please try updating to the lat-
est firmware. If the procedure
above does not resolve the
alert, please contact Ouster
Support.

RESTART

0x0100005E INTERNAL_FAULT Warning Unit has experienced an over-
current event; unit will restart
to attempt recovery.

RESTART

0x0100005F IO_CONNECTION Warning Unit has stopped receiving
SYNC_PULSE_IN signals and
is configured to expect them.
Check electrical inputs to
sensor.

No Action

0x01000060 IO_CONNECTION Warning Unit has stopped receiving
NMEA messages at the MUL-
TIPURPOSE_IO port and is
configured to expect them.
Check electrical inputs to
sensor.

No Action

continues on next page

158

https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000061 INTERNAL_COMM Error Unit has experienced an in-
ternal COMM error Unit will
restart to attempt recovery.

RESTART

0x01000062 INTERNAL_FAULT Error Unit has experienced a internal
error; Unit is in Error stopped
state. Please contact Ouster
Support.

No Action

0x01000063 MOTOR_CONTROL Warning Unit is spinning outside of tol-
erant range; Check sensor op-
erating conditions.

No Action

0x01000064 MOTOR_CONTROL Error Unit failed to maintain tar-
get spin rate; please contact
Ouster Support.

No Action

0x01000065 MOTOR_CONTROL Error Unit has experienced a internal
error; Unit is in Error stopped
state. Please contact Ouster
Support.

No Action

0x01000066 MOTOR_CONTROL Error Unit has experienced a startup
error; Unit is in Error stopped
state. Please contact Ouster
Support.

SHUTDOWN

0x01000067 INTERNAL_FW Error Unit has experienced a startup
error; Unit is in Error stopped
state. Please contact Ouster
Support.

SHUTDOWN

0x01000068 INTERNAL_FW Error Unit has experienced a startup
error; Unit is in Error stopped
state. Please contact Ouster
Support.

SHUTDOWN

0x01000069 MOTOR_CONTROL Warning Unit is spinning outside of tol-
erant range; Check sensor op-
erating conditions. Please
contact Ouster Support.

No Action

0x0100006A MOTOR_CONTROL Warning Unit is spinning outside of tol-
erant range; Check sensor op-
erating conditions. Please
contact Ouster Support.

No Action

0x0100006B OVERTEMP Error Unit has shut down due to
overheating. Please contact
Ouster Support.

SHUTDOWN

continues on next page

159

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100006C INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100006D INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100006E INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100006F INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000070 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

160

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000071 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000072 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000073 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000074 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000075 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

161

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000076 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000077 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000078 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000079 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100007A INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

162

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100007B INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100007C INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100007D INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100007E INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100007F INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

163

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000080 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000081 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000082 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000083 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000084 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

164

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000085 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000086 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000087 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000088 CONFIG Notice Please note all commands in
the TCP API are in planned
obsolescence and are subject
to deprecation shortly. Please
consider using the HTTP
API instead. Please refer to
Firmware User Manual for
more information or contact
Ouster Support

No Action

0x01000089 CONFIG Notice Please note that the LEGACY
profile option of config pa-
rameter udp_profile_lidar is in
planned obsolescence. Please
consider using a different op-
tion for the config parameter.
LEGACY profile is subject to
deprecation shortly. Please
refer to Firmware User Manual
for more information or con-
tact Ouster Support

No Action

continues on next page

165

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://static.ouster.dev/sensor-docs/
https://ouster.com/tech-support
https://static.ouster.dev/sensor-docs/
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100008A INTERNAL_FAULT Warning Unit has experienced an over-
current event that could de-
grade data and/or sensor per-
formance; unit will restart to
attempt recovery. Please stop
running sensor if this alert per-
sists and contact Ouster Sup-
port with a copy of the diag-
nostics file.

RESTART

0x0100008B INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100008C INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100008D INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100008E INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

166

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100008F INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000090 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000091 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000092 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000093 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

167

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000094 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000095 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000096 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000097 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x01000098 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

168

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x01000099 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100009A INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100009B INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100009C INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100009D CONFIG Notice Setting the signal multiplier
value on a Rev7 OS2 sensor
to 2x or 3x is not supported
and the sensor has fallen back
to 1x behavior. This does
not apply to any other sensor
models or prior generations of
OS2. Please refer to Firmware
User Manual for more informa-
tion or contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

169

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x0100009E INTERNAL_FAULT Error Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x0100009F INTERNAL_FAULT Error Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x010000A0 INTERNAL_COMM Error Unit has experienced an inter-
nal COMM warning. If the is-
sue persists, update to the lat-
est FW. Contact Ouster Sup-
port if the above steps do not
resolve the alert with Diagnos-
tic file.

No Action

0x010000A1 UNDERTEMP Warning Unit temperature is too low,
this could degrade data and/or
sensor performance. Please
stop running sensor if this
alert persists and contact
Ouster Support with a copy of
the diagnostics file.

No Action

0x010000A2 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

continues on next page

170

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 14.1 – continued from previous page

ID Category Level Alert Message Sensor Action

0x010000A3 INTERNAL_FAULT Warning Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

No Action

0x010000A4 INTERNAL_FAULT Error Unit has experienced an inter-
nal fault that could degrade
data and/or sensor perfor-
mance. Please stop running
sensor if this alert persists
and contact Ouster Support
with a copy of the diagnostics
file.

Go to ERROR
RESTART

0x010000A5 CONFIG NOTICE When ‘MinimumRange (cm)’ is
less than 50cm, Ouster recom-
mends setting ‘Return Order’
to FARTHEST_TO_NEAREST.
Please refer to Ouster
Firmware User Manual for
more information.

No Action

0x010000A6 UDP_TRANSMISSION Warning Could not send lidar UDP data
packet for more than 500 ms.
This may occur if the network
was unreachable.

No Action

0x010000A7 UDP_TRANSMISSION Warning Could not send IMU UDP data
packet for more than 500 ms.
This may occur if the network
was unreachable.

No Action

171

https://ouster.com/tech-support
https://ouster.com/tech-support
https://static.ouster.dev/sensor-docs/index.html
https://static.ouster.dev/sensor-docs/index.html

15 Networking Guide

This guide will help you understand how to quickly get connected to your sensor to start doing great
things with it. When trying to connect to the sensor for the first time there are some basics that need
to be achieved for successful communication between the host machine and the sensor.

We need to ensure that the sensor receives an IP address from the host machine so that we can talk
to it. This can be achieved with a few different methods such as DHCP, link-local, static IP. We also
need to ensure that the sensor and the host machine are talking on the same subnet.

Once the sensor receives an IP address and is on the correct subnet we can talk to it using its host-
name, os-991234567890.local, where 991234567890 is the sensor serial number. The sensor serial number
can be found on a sticker affixed to the top of the sensor.

Based on the platform being used the user can refer to the following:

Windows

macOS

Linux

Note

DNS Service Discovery text announced by the sensor may provide an incorrect part number that
corresponds to an internal code. The correct part number can be found via the Sensor Web Inter-
face or HTTP API Reference Guide.

15.1 Networking Terminology

If some of this terminology is new to you don’t fret, we have defined some of it for you. Here is some
basic terminology that will help you digest the steps and be more familiar with networking in general.

IPv4 Address
This is the address that can be used to communicate with devices on a network. The format of
an IPv4 address is a set of four octets, xxx.xxx.xxx.xxx with xxx being in the range 0-255. For
example, your host machine Ethernet port may have an address of 192.0.2.1 and your sensor
may have an address of 192.0.2.130.

DHCP (Dynamic Host Configuration Protocol) Server
This is a server that may run on your host machine, switch, or router which will serve an IPv4
address to a device that is connected to it. It will ensure that each device connected will have a
unique IPv4 address on the network.

Link-local IPv4 Address
These are the addresses that are self-assigned between the host machine and a device con-
nected to it in the absence of a DHCP server. They are only valid within the network segment

172

that the host is connected to. The addresses lie within the block 169.254.0.0/16 (169.254.0.0 -
169.254.255.255).

Subnet Mask
This defines which bits of the IPv4 address are the network prefix and which are the host iden-
tifiers. See the table below for an example.

Binary Form Decimal-dot notation

IP address 11000000.00000000.00000010.10000010 192.0.2.130

Subnet mask 11111111.11111111.11111111.00000000 255.255.255.0

Network prefix 11000000.00000000.00000010.00000000 192.0.2.0

Host identifier 00000000.00000000.00000000.10000010 0.0.0.130

Note

Subnet mask can be abbreviated with the number of bits that apply to the network prefix. E.g. /24
for 255.255.255.0 or /16 for 255.255.0.0.

Static IPv4 Address
This is when you specify the addresses for the host machine and/or connected device rather
than letting the host machine self-assign or using a DHCP server. For example, you may want to
specify the host machine IPv4 address to be 192.0.2.100/24 and the sensor to be 192.0.2.200.

Hostname
This is the more human readable name that comes with your sensor. The sensor’s hostname is
os-991234567890.local, where 991234567890 is the sensor serial number.

Note

The .local portion of the hostname denotes the local domain used in combination with multicast
DNS (mDNS). It is employed when using the sensor in a local network environment with supporting
operating system services. This means when the sensor is directly connected to the host machine
or if the host machine and sensor are on the same network connected through a router or switch.
If you are trying to connect to the sensor on another domain with a supporting DHCP and DNS
server configuration you should replace the .local with the domain the sensor is on. For example,
if the sensor is connected to a network with domain ouster-domain.com the sensor will be reachable
on os-991234567890.ouster-domain.com.

173

15.2 Windows

The following steps have been tested onWindows 10. The sensor’s hostname is os-991234567890.local,
where 991234567890 is the sensor serial number. The sensor serial number can be found on a sticker
affixed to the top of the sensor.

15.2.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note

It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

15.2.2 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note

If you are unable to load the sensor homepage, follow the steps in Determining the IPv4 Address
of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

15.2.3 Determining the IPv4 Address of the Sensor

Open a command prompt on the host machine by pressing Win+X and then A. Use the ping
command to determine the IPv4 address of the sensor

Command

ping -4 [sensor_hostname]

Example

C:\\WINDOWS\\system32>ping -4 |os-sn|

Note

If this command hangs you may need to go back and configure your interface to link-local in the
section Connecting the Sensor

174

Response

Pinging |os-sn| [|sensor-ip|] with 32 bytes of data:
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64
Reply from |sensor-ip|: bytes=32 time<1ms TTL=64

Ping statistics for |sensor-ip|:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor IPv4
address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor with mDNS Service Discovery

Command

dns-sd -G v4 [sensor_hostname]

Example

C:\\WINDOW\\system32>dns-sd -G v4 |os-sn|

Response

Timestamp A/R Flags if Hostname Address TTL
14:22:46.897 Add 2 6 |os-sn| |sensor-ip| 120

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor IPv4
address is of the form 169.254.x.x it is connected via link-local.

15.2.4 Determining the IPv4 Address of the Interface

1. Open a command prompt by pressingWin+X and then A

2. View the IPv4 address of your interfaces

Command

netsh interface ip show config

175

Example

C:\\WINDOWS\\system32>netsh interface ip show config

Response

Configuration for interface "Local Area Connection"
DHCP enabled: Yes
IP Address: |interface-ip|
Subnet Prefix: 169.254.0.0/16 (mask 255.255.0.0)
InterfaceMetric: 25
DNS servers configured through DHCP: None
Register with which suffix: Primary only
WINS servers configured through DHCP: None

Configuration for interface "Loopback Pseudo-Interface 1"
DHCP enabled: No
IP Address: 127.0.0.1
Subnet Prefix: 127.0.0.0/8 (mask 255.0.0.0)
InterfaceMetric: 75
Statically Configured DNS Servers: None
Register with which suffix: Primary only
Statically Configured WINS Servers: None

In this example, your sensor is plugged into interface “Local Area Connection”

Your host IPv4 address will be on the line that starts with IP Address: In this case it is 169.254.0.1

Note

If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local to the sensor.
This means that Windows self-assigned an IP address in the absence of a DHCP server.

15.2.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to bemore plug and play. This is themethod Ouster recommends to configure your
sensor.

Set your interface to DHCP.

Command

netsh interface ip set address ["Network Interface Name"] dhcp

Example

with interface name "Local Area Connection"

C:\\WINDOWS\\system32>netsh interface ip set address "Local Area Connection" dhcp

176

Response

blank

15.2.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static.

Command

netsh interface ip set address name="Network Interface Name" static [IP address] [Subnet Mask]
[Gateway]

Example

with interface name “Local Area Connection” and IPv4 address 192.0.2.1/24.

C:\\WINDOWS\\system32>netsh interface ip set address name="Local Area Connection"
static 192.0.2.1/24

Note

The /24 is shorthand for Subnet Mask = 255.255.255.0

Response

blank

15.2.7 Finding a Sensor with mDNS Service Discovery

Warning

Until FW v3.0.1 Ouster sensors used Multicast Domain Name Service (mDNS) with a service type
named _roger._tcp. This is now subject to deprecation. Please use _ouster-lidar._tcp starting FW
v3.1 and later.

The sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _ouster-lidar._tcp. You can use service discovery tools such as Bonjour
browser (Windows) to find all sensors connected to the network.

177

Note

Click Bonjour to install Bonjour Browser.

Example using Bonjour Browser:

Step 1: User can download the Bonjour Browser

Figure 15.1: Downloading Application

Figure 15.2: Software Setup and Installation

178

https://hobbyistsoftware.com/bonjourbrowser/
https://hobbyistsoftware.com/bonjourbrowser/

Step 2: Sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _ouster-lidar._tcp. Click on this to get all the information required.

Figure 15.3: _ouster-lidar._tcp

15.3 macOS

The following steps have been tested on macOS 10.15.4. In this example the sensor’s hostname is
os-991234567890.local, where 991234567890 is the sensor serial number. The sensor serial number can
be found on a sticker affixed to the top of the sensor.

179

15.3.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note

It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

15.3.2 The Sensor Homepage

1. Type os-991234567890.local in the address bar of your browser to view the sensor homepage

Note

If you are unable to load the sensor homepage, follow the steps in Determining the IPv4 Address
of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

15.3.3 Determining the IPv4 Address of the Sensor

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -c3 [sensor_hostname]

Example

Mac-Computer:~ username$ ping -c3 |os-sn|

Note

If this command hangs you may need to go back and configure your interface to link-local in the
section Connecting the Sensor

Response

PING |os-sn| (|sensor-ip|): 56 data bytes
64 bytes from |sensor-ip|: icmp_seq=0 ttl=64 time=0.644 ms

(continues on next page)

180

(continued from previous page)
64 bytes from |sensor-ip|: icmp_seq=1 ttl=64 time=0.617 ms
64 bytes from |sensor-ip|: icmp_seq=2 ttl=64 time=0.299 ms

--- |os-sn| ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.299/0.520/0.644/0.157 ms

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor IPv4
address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor with mDNS Service Discovery

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 |os-sn|

Response

DATE: ---Tue 28 Apr 2020---
11:40:43.228 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
11:40:43.414 Add 2 18 |os-sn|. |sensor-ip| 120

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor IPv4
address is of the form 169.254.x.x it is connected via link-local.

15.3.4 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. en1 in the example below.

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. View the IPv4 address of your interfaces

Command

181

ifconfig

182

Example

Mac-Computer:~ username$ ifconfig

Response

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
nd6 options=201<PERFORMNUD,DAD>

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 38:f9:d3:d6:33:8a
inet6 fe80::1c30:1246:93a2:9f68%en0 prefixlen 64 secured scopeid 0x7
inet 192.0.2.7 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active

en1: flags=8963<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 48:65:ee:1d:22:35
inet6 fe80::c27:1917:47ed:bcfe%en1 prefixlen 64 secured scopeid 0x12
inet |interface-ip| netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

* In this example, your sensor is plugged into interface ``en1``
* Your host IPv4 address will be on the line that starts with ``inet``: In this case it is |interface-ip|

Note

If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local to the sensor.
This means that the macOS self-assigned an IP address in the absence of a DHCP server.

15.3.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP

Command

sudo ipconfig set [interface_name] DHCP

183

Example

with interface name en1

Mac-Computer:~ username$ sudo ipconfig set en1 DHCP

Response

blank

Note: However you can verify the change has been made with the ``ifconfig`` command.
The ``inet`` line will be blank if nothing is plugged in or shows the DHCP or
link-local self-assigned IPv4 address. E.g. |interface-ip|

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet |interface-ip| netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

15.3.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static

Command

sudo ipconfig set [interface_name] MANUAL [ip_address] [subnet_mask]

Example

with interface name en1 and IPv4 address 192.0.2.1 and subnet mask 255.255.255.0.

Mac-Computer:~ username$ sudo ipconfig set en1 MANUAL 192.0.2.1 255.255.255.0

Note

The /24 is shorthand for Subnet Mask = 255.255.255.0

Response

blank

(continues on next page)

184

(continued from previous page)
Note: However you can verify the change has been made with the ``ifconfig`` command.

The ``inet`` line will show the static IPv4 address. e.g. ``192.0.2.1``.

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet 192.0.2.1 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

15.3.7 Finding a Sensor with mDNS Service Discovery

Warning

Until FW v3.0.1 Ouster sensors used Multicast Domain Name Service (mDNS) with a service type
named _roger._tcp. This is now subject to deprecation, please use _ouster-lidar._tcp starting FW
v3.1 and later.

With mDNS Service Discovery:

The sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _ouster-lidar._tcp. You can use service discovery tools such as dns-sd
(Windows/macOS) to find all sensors connected to the network.

1. Find all sensors and their associated service text on a network.

Command

dns-sd -Z [service type]

Example

Mac-Computer:~ username$ dns-sd -Z _ouster-lidar._tcp

Response

Browsing for _ouster-lidar._tcp
DATE: ---Thu 30 Apr 2020---
17:27:52.242 ...STARTING...

; To direct clients to browse a different domain, substitute that domain in
place of '@'

lb._dns-sd._udp PTR @

; In the list of services below, the SRV records will typically reference dot-local
(continues on next page)

185

(continued from previous page)
Multicast DNS names.

; When transferring this zone file data to your unicast DNS server, you'll need to
replace those dot-local

; names with the correct fully-qualified (unicast) domain name of the target host
offering the service.

_ouster-lidar._tcp PTR
Ouster Sensor |sn|._ouster-lidar._tcp
Ouster Sensor |sn|._ouster-lidar._tcp SRV 0 0 7501 |os-sn|. ;
Replace with unicast FQDN of target host
Ouster Sensor |sn|._ouster-lidar._tcp TXT "pn=840-102145-B" "sn= |sn|"
"fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= |sn|"

2. Browse for the sensor IPv4 address using dns-sd and the sensor hostname.

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 |os-sn|

Response

DATE: ---Thu 30 Apr 2020---
17:37:33.155 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
17:37:33.379 Add 2 7 |os-sn|. |sensor-ip| 120

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123

With Discovery App:

Step 1: User can download the Discovery DNS-SD

186

https://apps.apple.com/us/app/discovery-dns-sd-browser/id1381004916?mt=12

Figure 15.4: Downloading Application

Step 2: Using finder, the user can search for Discovery

Figure 15.5: Finding the Application

Step 3: Sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _ouster-lidar._tcp. Click on this to get all the information required.

187

Figure 15.6: _ouster-lidar._tcp

15.4 Linux

The following steps have been tested on Ubuntu 18.04 & 20.04.4 LTS. In this example the sensor’s
hostname is os-991234567890.local, where 991234567890 is the sensor serial number. The sensor serial
number can be found on a sticker affixed to the top of the sensor.

15.4.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

3. If directly connecting to the host machine you may need to set your Ethernet interface to
Link-Local Onlymode. This can be done via the command line or GUI. See instructions in Setting
the Interface to Link-Local Only

Note

It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

188

15.4.2 Setting the Interface to Link-Local Only

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method link-local ipv4.addresses ""

Note

To identify the name of your connection, please use the command: nmcli connection show.

Example

with interface name eth0 and IPv4 address "".

username@ubuntu:~$ nmcli con modify eth0 ipv4.method link-local ipv4.addresses ""

Response

blank

Note: However you can verify the change has been made with the ``ip addr`` command.
The ``inet`` line for the interface ``eth0`` will show the link-local IPv4 address automatically
negotiated once the sensor is reconnected to the interface. e.g. |interface-ip|.

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet |interface-ip|/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

ViaGUI: The image below illustrates how to set the interface to Link-Local Onlymode using the graph-
ical user interface.

189

Figure 15.7: Set interface to Link-Local Only via the GUI

Note

It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

15.4.3 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note

If you are unable to load the sensor homepage, follow the steps in Determining the IPv4 Address
of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

15.4.4 Determining the IPv4 Address of the Sensor

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 -c3 [sensor_hostname]

Example

190

username@ubuntu:~$ ping -4 -c3 |os-sn|

Note

If this command hangs you may need to go back and configure your interface to link-local in the
section Setting the Interface to Link-Local Only

Response

PING |os-sn| (|sensor-ip|) 56(84) bytes of data.
64 bytes from |os-sn| (|sensor-ip|): icmp_seq=1 ttl=64 time=1.56 ms
64 bytes from |os-sn| (|sensor-ip|): icmp_seq=2 ttl=64 time=0.893 ms
64 bytes from |os-sn| (|sensor-ip|): icmp_seq=3 ttl=64
time=0.568 ms

--- |os-sn| ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2025ms
rtt min/avg/max/mdev = 0.568/1.008/1.565/0.416 ms

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor IPv4
address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using avahi-browse and the sensor service type,
which is _ouster-lidar._tcp. Learn more about this in Finding a Sensor with mDNS Service Dis-
covery

Command

avahi-browse -lrt [service type]

191

Example

username@ubuntu:~$ avahi-browse -lrt _ouster-lidar._tcp

Response

+ eth0 IPv6 Ouster Sensor |sn| _ouster-lidar._tcp local
+ eth0 IPv4 Ouster Sensor |sn| _ouster-lidar._tcp local
= eth0 IPv6 Ouster Sensor |sn| _ouster-lidar._tcp local

hostname = [|os-sn|]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor |sn| _ouster-lidar._tcp local

hostname = [|os-sn|]
address = [|sensor-ip|]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= |sn|"

"pn=840-102145-B"]

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your sensor IPv4
address is of the form 169.254.x.x it is connected via link-local.

15.4.5 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. eth0 in the example below.

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. View the IPv4 address of your interfaces

Command

ip addr

Example

username@ubuntu:~$ ip addr

Response

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
(continues on next page)

192

(continued from previous page)
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet |interface-ip|/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 192.0.2.232/24 brd 192.0.2.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever
4: gpd0: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN group

default qlen 500
link/none

In this example, your sensor is plugged into interface eth0.

Your host IPv4 address will be on the line that starts with inet: In this case it is 169.254.0.1.

Note

If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local to the sensor.
This means that the Linux self-assigned an IP address in the absence of a DHCP server.

15.4.6 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Note

It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method auto ipv4.addresses ""

Example

with interface name eth0

193

username@ubuntu:~$ nmcli con modify eth0 ipv4.method auto ipv4.addresses ""

Response

blank

Note: However you can verify the change has been made with the ``ip addr`` command.
There will be no ``inet`` line for the interface ``eth0`` until you plug in a cable
to a device that has a DHCP server to provide an IPv4 address the interface

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute
valid_lft forever preferred_lft forever

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0
valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link
valid_lft forever preferred_lft forever

Via GUI
The image below illustrates how to set the interface to Automatic (DHCP)mode using the graphical
user interface.

15.4.7 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Note

It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method manual ipv4.addresses [ip_address]

194

Figure 15.8: Set interface to Automatic (DHCP) via the GUI

Example

with interface name eth0 and IPv4 address 192.0.2.1/24.

username@ubuntu:~$ nmcli con modify eth0 ipv4.method manual ipv4.addresses 192.0.2.1/24

Note

The /24 is shorthand for Subnet Mask = 255.255.255.0

Response

blank

Note: However you can verify the change has been made with the ``ip addr`` command.
The ``inet`` line for the interface ``eth0`` will show the static IPv4 address. e.g. ``192.0.2.1``

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff

(continues on next page)

195

(continued from previous page)
inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group

default qlen 1000
link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

Via GUI
The image below illustrates how to set the interface to Manual (static)mode using the graphical
user interface.

Figure 15.9: Set interface to Manual (static) via the GUI

15.4.8 Finding a Sensor with mDNS Service Discovery

Warning

Until FW v3.0.1 Ouster sensors used Multicast Domain Name Service (mDNS) with a service type
named _roger._tcp. This is now subject to deprecation, please use _ouster-lidar._tcp starting FW
v3.1 and later.

196

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _ouster-lidar._tcp. You can use service discovery tools such as avahi-browse
(Linux) to find all sensors connected to the network.

1. Find all sensors and their associated service text which includes the sensor IPv4 address using
avahi-browse and the sensor service type _ouster-lidar._tcp.

Command

avahi-browse -lrt [service type]

Example

username@ubuntu:~$ avahi-browse -lrt _ouster-lidar._tcp

Response

+ eth0 IPv6 Ouster Sensor |sn| _ouster-lidar._tcp local
+ eth0 IPv4 Ouster Sensor |sn| _ouster-lidar._tcp local
= eth0 IPv6 Ouster Sensor |sn| _ouster-lidar._tcp local

hostname = [|os-sn|]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor |sn| _ouster-lidar._tcp local

hostname = [|os-sn|]
address = []
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= |sn|"

"pn=840-102145-B"]

Note

In this example, your sensor IPv4 address is determined to be 169.254.0.123.

197

16 Appendix

16.1 PTP Profiles Guide

16.1.1 Overview

This guide provides instructions on setting the Precision Time Protocol (PTP) profile of the Ouster
sensor. The profile of the Ouster sensor and your master clock must match for time synchronization
to be possible.

PTP Profiles

There are several PTP profiles that are commonly used. The supported profiles on the Ouster sensor
are listed below:

"default" - The IEEE 1588 Default PTP profile addresses many common applications. Most PTP
capable devices support the Default profile.

"gptp" - Generalized PTP (gPTP) is the common name for the IEEE standard 802.1AS-2011 which
improves the interoperability of PTP by simplifying the supported options. The gPTP profile is
useful when using the Ouster sensor with gPTP compatible hardware such as an Audio Visual
Bridge (AVB), e.g. the MOTU AVB.

"automotive-slave" - The Automotive Slave PTP profile is an extension to gPTP for automotive
specific use cases. In particular it disables the BMCA and handles time steps to expedite con-
vergence.

"default-l2-relaxed" - This profile is based on the "default" profile, but with the network trans-
port set to L2 and a relaxed 1 second time step threshold.

16.1.2 PTP HTTP API

The PTP profile of the sensor is changed using an HTTP PUT request. This can be done using several
different tools such as HTTPie, curl, Advanced REST Client, etc.

The request URL is GET /api/v1/time/ptp/profile and PUT /api/v1/time/ptp/profile.

Valid values are (“”, are included):

"default"1

"gptp"2

"automotive-slave"3

1 "default" is a layer 3 (UDP) mechanism.
2 "gptp" is a layer 2 (Ethernet) mechanisms.
3 "automotive-slave" is a layer 2 (Ethernet) mechanism.

198

https://motu.com/products/avb/avb-switch
https://httpie.org/
https://curl.haxx.se/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US

"default-l2-relaxed"4

Note

Changing the PTP profile does not require reinitialization or writing the configuration text file to be
persistent. It is persistent as soon a valid PUT request is executed and a valid response is received.

16.1.3 Enabling the PTP profiles

Below are some examples using popular command-line tools.

Example using cURL

In this example we are setting the PTP profile of the Ouster sensor to "gptp" using the cURL command
line tool.

Command

curl -X PUT -H "Content-Type: application/json" -d '"gptp"' http://<sensor_hostname>/api/v1/time/ptp
/profile/

Response

"gptp"%

Example using HTTPie

In this example we are setting the PTP profile of the Ouster sensor to "default" using the HTTPie
command line tool.

Command

http PUT http://<sensor_hostname>/api/v1/time/ptp/profile <<< '"default"'

Response

"default"%

4 "default-l2-relaxed" is a layer 2 (Ethernet) mechanism.

199

Sync Verification

Please see the Verifying Operation section for details on how to verify the sensor is synchronized.

200

16.2 PTP Quickstart Guide

16.2.1 Overview

There are many configurations for a PTP network, this quick start guide aims to cover the basics by
using Ubuntu 18.04 as an example. It provides configuration settings for a commercial PTP grand-
master clock and also provides directions on setting up a Linux computer (Ubuntu 18.04) to function
as a PTP grandmaster.

The linuxptp project provides a suite of PTP tools that can be used to serve as a PTP master clock for
a local network of sensors.

Assumptions

Command line Linux knowledge (e.g., package management, command line familiarity, etc.).

Ethernet interfaces that support hardware timestamping.

Ubuntu 18.04 is assumed for this tutorial, but any modern distribution should suffice.

Knowledge of systemd service configuration and management.

Familiarity with Linux permissions.

Physical Network Setup

Ensure the Ouster sensor is connected to the PTP master clock with at most one network switch.
Ideally the sensor should be connected directly to the PTP grandmaster. Alternatively, a simple layer-2
gigabit Ethernet switch will suffice. Multiple switches are not recommended and will add unnecessary
jitter.

Third Party Grandmaster Clock

A dedicated grandmaster clock should be used for the highest absolute accuracy often with a GPS
receiver.

It must be configured with the following parameters which match the linuxptp client defaults:

Transport: UDP IPv4

Delay Mechanism: E2E

Sync Mode: Two-Step

Announce Interval: 1 - sent every 2 seconds

Sync Interval: 0 - sent every 1 second

Delay Request Interval: 0 - sent every 1 second

201

http://linuxptp.sourceforge.net/

For more settings, review the port_data_set field returned from the sensor’s HTTP /time/ptp interface.

Linux PTP Grandmaster Clock

An alternative to an external grandmaster PTP clock is to run a local Linux PTPmaster clock if accuracy
allows. This is often implemented on a vehicle computer that interfaces directly with the lidar sensors.

This section outlines how to configure a master clock.

Example Network Setup

This section assumes the following network setup as it has elements of a local master clock and the
option for an upstream PTP time source.

+-------------------------------------+
| Ubuntu 18.04 System |
| * 2x Intel i210 Ethernet Interfaces |
| * Linux PTP service |
| |
| eno1 eno2 |
+-------+---------------------+-------+

| |
+-------+-------+ +--------+------+
| Trimble GM100 | | + +
GPS -> PTP		Ouster OS1	
grandmaster			
(optional)			
+---------------+ +---------------- |

+--------------- +

The focus is on configuring the Linux PTP service to serve a common clock to all the downstream
Ouster sensors using the Linux system time from the Ubuntu host machine.

Optionally, a grandmaster clock can be added to discipline the system time of the Linux host.

Installing Necessary Packages

Several packages are needed for PTP functionality and verification:

linuxptp - Linux PTP package with the following components:

ptp4l daemon to manage hardware and participate as a PTP node

phc2sys to synchronize the Ethernet controller’s hardware clock to the Linux system clock
or shared memory region

pmc to query the PTP nodes on the network.

chrony - A NTP and PTP time synchronization daemon. It can be configured to listen to both NTP
time sources via the Internet and a PTP master clock such as one provided by a GPS with PTP

202

support. This will validate the time configuration makes sense given multiple time sources.

ethtool - A tool to query the hardware and driver capabilities of a given Ethernet interface.

$ sudo apt update
...
Reading package lists... Done
Building dependency tree
Reading state information... Done

$ sudo apt install linuxptp chrony ethtool
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:

chrony ethtool linuxptp
0 upgraded, 3 newly installed, 0 to remove and 29 not upgraded.
Need to get 430 kB of archives.
After this operation, 1,319 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu bionic/main amd64 ethtool amd64 1:4.15-0ubuntu1 [114 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu bionic/universe amd64 linuxptp amd64 1.8-1 [112 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 chrony amd64 3.2-4ubuntu4.2 [203 kB]
Fetched 430 kB in 1s (495 kB/s)
Selecting previously unselected package ethtool.
(Reading database ... 117835 files and directories currently installed.)
Preparing to unpack .../ethtool_1%3a4.15-0ubuntu1_amd64.deb ...
Unpacking ethtool (1:4.15-0ubuntu1) ...
Selecting previously unselected package linuxptp.
Preparing to unpack .../linuxptp_1.8-1_amd64.deb ...
Unpacking linuxptp (1.8-1) ...
Selecting previously unselected package chrony.
Preparing to unpack .../chrony_3.2-4ubuntu4.2_amd64.deb ...
Unpacking chrony (3.2-4ubuntu4.2) ...
Setting up linuxptp (1.8-1) ...
Processing triggers for ureadahead (0.100.0-20) ...
ureadahead will be reprofiled on next reboot
Setting up chrony (3.2-4ubuntu4.2) ...
Processing triggers for systemd (237-3ubuntu10.13) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Setting up ethtool (1:4.15-0ubuntu1) ...

Ethernet Hardware Timestamp Verification

Identify the Ethernet interface to be used on the client (Linux) machine,
e.g., eno1. Run the ethtool utility and query this network interface for supported capabilities.

Output of ethtool -T for a functioning Intel i210 Ethernet interface:

$ sudo ethtool -T eno1
Time stamping parameters for eno1:
Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)

(continues on next page)

203

https://www.kernel.org/pub/software/network/ethtool/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/i210-ethernet-controller-datasheet.pdf

(continued from previous page)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)

PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

16.2.2 Configurations

Configuring ptp4l for Multiple Ports

On a Linux system with multiple Ethernet ports (i.e. Intel i210) /etc/linuxptp/ptp4l.conf needs to be
configured to support all of them.

boundary_clock_jbod 1
[eno1]
[eno2]

Note

Add the above required modification at the end of the existing file. Deleting or editing the default
settings section of the ptp4l.conf file will result in an error.

The default systemd service file for Ubuntu 18.04 attempts to use the eth0 address on the command
line. Override systemd service file so that the configuration file is used instead of hard coded in the
service file.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/ptp4l.service.d

Create a file at /etc/systemd/system/ptp4l.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Restart the ptp4l service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart ptp4l
$ sudo systemctl status ptp4l

(continues on next page)

204

(continued from previous page)
* ptp4l.service - Precision Time Protocol (PTP) service

Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/ptp4l.service.d

└─override.conf
Active: active (running) since Wed 2019-03-13 14:38:57 PDT; 3s ago
Docs: man:ptp4l

Main PID: 25783 (ptp4l)
Tasks: 1 (limit: 4915)

CGroup: /system.slice/ptp4l.service
└─25783 /usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 1: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] driver changed our HWTSTAMP options
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] tx_type 1 not 1
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] rx_filter 1 not 12
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 2: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 0: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 1: link up
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: link down
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: LISTENING to FAULTY on
FAULT_DETECTED (FT_UNSPECIFIED)
Mar 13 14:38:58 leadlizard ptp4l[25783]: [590189.360] port 1: new foreign master 001747.fffe.700038-1

The above systemctl status ptp4l console output shows systemd correctly reading the override file
created earlier before starting several seconds after the restart command.

The log output shows that a grandmaster clock has been discovered on port 1 (eno1) and port 2 (eno2) is
currently disconnected and in the faulty state as expected. In the test network a Trimble Thunderbolt
PTP GM100 Grandmaster Clock is attached on eno1.

Logs can be monitored (i.e. followed) like so:

$ journalctl -f -u ptp4l
-- Logs begin at Fri 2018-11-30 06:40:50 PST. --
Mar 13 14:51:37 leadlizard ptp4l[25783]: [590948.224] master offset -17 s2 freq -25963 path delay 14183
Mar 13 14:51:38 leadlizard ptp4l[25783]: [590949.224] master offset -13 s2 freq -25964 path delay 14183
Mar 13 14:51:39 leadlizard ptp4l[25783]: [590950.225] master offset 35 s2 freq -25920 path delay 14192
Mar 13 14:51:40 leadlizard ptp4l[25783]: [590951.225] master offset -59 s2 freq -26003 path delay 14201
Mar 13 14:51:41 leadlizard ptp4l[25783]: [590952.225] master offset -24 s2 freq -25986 path delay 14201
Mar 13 14:51:42 leadlizard ptp4l[25783]: [590953.225] master offset -39 s2 freq -26008 path delay 14201
Mar 13 14:51:43 leadlizard ptp4l[25783]: [590954.225] master offset 53 s2 freq -25928 path delay 14201
Mar 13 14:51:44 leadlizard ptp4l[25783]: [590955.226] master offset -85 s2 freq -26050 path delay 14207
Mar 13 14:51:45 leadlizard ptp4l[25783]: [590956.226] master offset 127 s2 freq -25863 path delay 14207
Mar 13 14:51:46 leadlizard ptp4l[25783]: [590957.226] master offset 9 s2 freq -25943 path delay 14208
Mar 13 14:51:47 leadlizard ptp4l[25783]: [590958.226] master offset -23 s2 freq -25973 path delay 14208
Mar 13 14:51:48 leadlizard ptp4l[25783]: [590959.226] master offset -61 s2 freq -26018 path delay 14190
Mar 13 14:51:49 leadlizard ptp4l[25783]: [590960.226] master offset 69 s2 freq -25906 path delay 14190
Mar 13 14:51:50 leadlizard ptp4l[25783]: [590961.226] master offset -73 s2 freq -26027 path delay 14202
Mar 13 14:51:51 leadlizard ptp4l[25783]: [590962.226] master offset 19 s2 freq -25957 path delay 14202
Mar 13 14:51:52 leadlizard ptp4l[25783]: [590963.226] master offset 147 s2 freq -25823 path delay 14202
...

205

Configuring ptp4l as a Local Master Clock

The IEEE-1588BestMasterClockAlgorithm (BMCA) will select a grandmaster clock based on anumber
ofmasters. Inmost networks there should be only a singlemaster. In the example network the Ubuntu
machine will be configured with a non-default clockClass so its operation qualifies it to win the BMCA.

Replace the default value with a lower clock class (higher priority) and restart linuxptp. Edit /etc/
linuxptp/ptp4l.conf and comment out the default clockClass value and insert a line setting it 128.

#clockClass 248
clockClass 128

Restart ptp4l so the configuration change takes effect.

$ sudo systemctl restart ptp4l

This will configure ptp4l to advertise a master clock on eno2 as a clock that will win the BMCA for an
Ouster OS1 sensor.

However, the ptp4l service is only advertising the Ethernet controller’s PTP hardware clock, not the
Linux system time as is often expected.

Configuring phc2sys to Synchronize the System Time to the PTP Clock

To synchronize the Linux system time to the PTP hardware clock the phc2sys utility needs to be run.
The following configuration will tell phc2sys to take the Linux CLOCK_REALTIME and write that time to the
PTP hardware clock in the Ethernet controller for eno2. These interfaces are then connected to PTP
slaves such as Ouster OS1 sensors.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/phc2sys.service.d

Create a file at /etc/systemd/system/phc2sys.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/phc2sys -w -s CLOCK_REALTIME -c eno2

Note

If multiple interfaces need to be synchronized from CLOCK_REALTIME then multiple instances of the
phc2sys service need to be run as it only accepts a single slave (i.e. -c) argument.

Restart the phc2sys service so the change takes effect:

$ sudo systemctl daemon-reload
(continues on next page)

206

(continued from previous page)
$ sudo systemctl restart phc2sys
$ sudo systemctl status phc2sys

Configuring Chrony to Set System Clock Using PTP

An upstream PTP grandmaster clock (e.g., a GPS disciplined PTP clock) can be used to set the system
time if precise absolute time is needed for sensor data.

Chrony is a Linux time service that can read fromNTP and PTP and set the Linux system time using the
most accurate source available. With a properly functioning PTP grandmaster the PTP time source
will be selected and the error from the public time servers can be reviewed.

The following phc2shm service will synchronize the time from eno1 (where the external grandmaster
is attached) to the system clock.

Create a file named /etc/systemd/system/phc2shm.service with the following contents:

/etc/systemd/system/phc2shm.service
[Unit]
Description=Synchronize PTP hardware clock (PHC) to NTP SHM
Documentation=man:phc2sys
After=ntpdate.service
Requires=ptp4l.service
After=ptp4l.service

[Service]
Type=simple
ExecStart=/usr/sbin/phc2sys -s eno1 -E ntpshm -w

[Install]
WantedBy=multi-user.target

Then start the newly created service and check that it started.

$ sudo systemctl start phc2shm
$ sudo systemctl status phc2shm

Add the PTP time source to the chrony configuration which will read the shared memory region man-
aged by the phc2shm service created above.

Append the following to the /etc/chrony/chrony.conf file:

refclock SHM 0 poll 1 refid ptp

Restart chrony so the updated configuration file takes effect:

$ sudo systemctl restart chrony

After waiting a minute for the clock to synchronize, review the chrony client timing accuracy:

207

$ chronyc tracking
Reference ID : 70747000 (ptp)
Stratum : 1
Ref time (UTC) : Thu Mar 14 02:22:58 2019
System time : 0.000000298 seconds slow of NTP time
Last offset : -0.000000579 seconds
RMS offset : 0.001319735 seconds
Frequency : 0.502 ppm slow
Residual freq : -0.028 ppm
Skew : 0.577 ppm
Root delay : 0.000000001 seconds
Root dispersion : 0.000003448 seconds
Update interval : 2.0 seconds
Leap status : Normal

$ chronyc sources -v
210 Number of sources = 9

.-- Source mode '~' = server, '=' = peer, '#' = local clock.
/ .- Source state '*' = current synced, '+' = combined , '-' = not combined,

| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
|| .- xxxx [yyyy] +/- zzzz
|| Reachability register (octal) -. | xxxx = adjusted offset,
|| Log2(Polling interval) --. | | yyyy = measured offset,
|| \ | | zzzz = estimated error.
|| | | \
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
#* ptp 0 1 377 1 +27ns[+34ns] +/- 932ns
~- chilipepper.canonical.com 2 6 377 61 -482us[-482us] +/- 99ms
~- pugot.canonical.com 2 6 377 62 -498us[-498us] +/- 112ms
~- golem.canonical.com 2 6 337 59 -467us[-468us] +/- 95ms
~- alphyn.canonical.com 2 6 377 58 +957us[+957us] +/- 95ms
~- legacy13.chi1.ntfo.org 3 6 377 62 -10ms[-10ms] +/- 178ms
~- tesla.selinc.com 2 6 377 128 +429us[+514us] +/- 42ms
~- io.crash-override.org 2 6 377 59 +441us[+441us] +/- 58ms
~- hadb2.smatwebdesign.com 3 6 377 58 +1364us[+1364us] +/- 99ms

Note that the Reference IDmatches the ptp reference ID from the chrony.conf file and that the sources
output shows the ptp reference ID as selected (signified by the * state in the second column). Addi-
tionally, the NTP time sources show a small relative error to the high accuracy PTP time source.

In this case the PTP grandmaster is properly functioning.

If this error is large, chrony will select the NTP time sources and mark the PTP time source as invalid.
This typically signifies that something is mis-configured with the PTP grandmaster upstream of this
device or the linuxptp configuration.

208

16.2.3 Verifying Operation

Changing the profile prompts the sensor to restart the synchronization process, generally preferred
over rebooting the entire product. Typically, only the relaxed profiles adjust the clock more than once.

Table 16.1: Verifying PTP Operation for Rev7 with FW v3.1 and later

PTP Parameters Default gPTP Automotive
Slave

Default-L2
Relaxed

parent_data_set.
grandmaster_identity

00005e.fffe.
005301

00005e.fffe.
005301

NA 00005e.fffe.
005301

port_data_set.port_state SLAVE SLAVE SLAVE SLAVE

time_status_np.gm_present true true false true

time_status_np.
master_offset

< 1μs < 1μs < 1μs < 1μs

PTP Example JSON Response for “Profile”: "default"

To Query Sensor PTP State: Refer to GET /api/v1/time/ptp/profile and PUT /api/v1/time/ptp/profile.

{
"profile": "default",
"parent_data_set":
{

"grandmaster_identity": "001747.fffe.700038",
"parent_port_identity": "ac1f6b.fffe.1db84e-2",
"parent_stats": 0,
"gm_clock_class": 6,
"observed_parent_clock_phase_change_rate": 2147483647,
"gm_clock_accuracy": 33,
"gm_offset_scaled_log_variance": 65535,
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_offset_scaled_log_variance": 65535

},
"current_data_set":
{

"steps_removed": 1,
"offset_from_master": 61355,
"mean_path_delay": 117977.0

},
"port_data_set":
{

"port_state": "SLAVE",
"peer_mean_path_delay": 0,
"log_min_delay_req_interval": 0,
"port_identity": "bc0fa7.fffe.c48254-1",
"log_sync_interval": 0,
"log_announce_interval": 1,

(continues on next page)

209

(continued from previous page)
"delay_mechanism": 1,
"log_min_pdelay_req_interval": 0,
"announce_receipt_timeout": 3,
"version_number": 2

},
"time_status_np":
{

"gm_time_base_indicator": 0,
"gm_identity": "001747.fffe.700038",
"cumulative_scaled_rate_offset": 0,
"scaled_last_gm_phase_change": 0,
"ingress_time": 0,
"master_offset": 61355,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"gm_present": true

},
"time_properties_data_set":
{

"frequency_traceable": 0,
"leap61": 0,
"time_traceable": 0,
"current_utc_offset": 37,
"leap59": 0,
"current_utc_offset_valid": 0,
"time_source": 160,
"ptp_timescale": 1

}
}

LinuxPTP PMC Tool

The sensor will respond to PTP management messages. The linuxptp pmc (see man pmc) utility can be
used to query all PTP devices on the local network.

On the Linux host for the pmc utility to communicate with then run the following command:

$ sudo pmc 'get PARENT_DATA_SET' 'get CURRENT_DATA_SET' 'get PORT_DATA_SET' 'get TIME_STATUS_NP' -i eno2
sending: GET PARENT_DATA_SET
sending: GET CURRENT_DATA_SET
sending: GET PORT_DATA_SET
sending: GET TIME_STATUS_NP

bc0fa7.fffe.c48254-1 seq 0 RESPONSE MANAGEMENT PARENT_DATA_SET
parentPortIdentity ac1f6b.fffe.1db84e-2
parentStats 0
observedParentOffsetScaledLogVariance 0xffff
observedParentClockPhaseChangeRate 0x7fffffff
grandmasterPriority1 128
gm.ClockClass 6
gm.ClockAccuracy 0x21
gm.OffsetScaledLogVariance 0x4e5d
grandmasterPriority2 128

(continues on next page)

210

(continued from previous page)
grandmasterIdentity 001747.fffe.700038

bc0fa7.fffe.c48254-1 seq 1 RESPONSE MANAGEMENT CURRENT_DATA_SET
stepsRemoved 2
offsetFromMaster 61355.0
meanPathDelay 117977.0

bc0fa7.fffe.c48254-1 seq 2 RESPONSE MANAGEMENT PORT_DATA_SET
portIdentity bc0fa7.fffe.c48254-1
portState SLAVE
logMinDelayReqInterval 0
peerMeanPathDelay 0
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval 0
delayMechanism 1
logMinPdelayReqInterval 0
versionNumber 2

bc0fa7.fffe.c48254-1 seq 3 RESPONSE MANAGEMENT TIME_STATUS_NP
master_offset 61355
ingress_time 0
cumulativeScaledRateOffset +0.000000000
scaledLastGmPhaseChange 0
gmTimeBaseIndicator 0
lastGmPhaseChange 0x0000'0000000000000000.0000
gmPresent true
gmIdentity 001747.fffe.700038

Tested Grandmaster Clocks

Trimble Thunderbolt PTP GM100 Grandmaster Clock

Firmware version: 20161111-0.1.4.0, November 11 2016 15:58:25

PTP configuration:

> get ptp eth0
Enabled : Yes
Clock ID : 001747.fffe.700038-1
Profile : 1588

Domain number : 0
Transport protocol : IPV4

IP Mode : Multicast
Delay Mechanism : E2E

Sync Mode : Two-Step
Clock Class : 6
Priority 1 : 128
Priority 2 : 128

Multicast TTL : 0
Sync interval : 0

Del Req interval : 0
Ann. interval : 1

(continues on next page)

211

(continued from previous page)
Ann. receipt timeout : 3

212

Ubuntu 18.04 + Linux PTP as a master clock

Intel i210 Ethernet interface

PCI hardware identifiers: 8086:1533 (rev 03)

Ubuntu 18.04 kernel package: linux-image-4.18.0-16-generic

Ubuntu 18.04 linuxptp package: linuxptp-1.8-1

213

16.3 Analyzing Linux Networking Issues

Note

Users are recommended to follow this section only in the case of intermittent packet drops or
packet reordering. Please make sure to double check udp_dest settings at the beginning of this
section, as the information provided is not useful if users are getting zero data.

In case the users are getting zero data and are unable to resolve the issue please contact our Field
Application Team.

This section captures tools and procedures to troubleshoot networking issues for a system consisting
of a PC/Workstation L2 Switch and one or more Ouster Sensors. Though examples use the Linux
Operating System as a model, the material is equally relevant to debugging issues in the Windows
environment. Where possible Windows command-line and UI analogs will be discussed in passing.

Debugging the Workstation Data Path

The workstation maintains a set of statistics associated with each layer in the network stack that can
be used to diagnose packet loss. The correct way to approach a network stack problem is to start with
the lowest layer in the stack first, examine the statistics for errors, and work your way up to the highest
layer. The reason that we start with the lowest layer is that issues in the lowest layer can cause issues
in other parts of the data-path.

16.3.1 Link Layer Statistics and Configuration

ethtool

In Linux, ethtool is used to query theNIC for statistics aswell as view and change theNIC configuration.
Linux also offersmore genericmechanisms to do this bywriting/reading keys in the kernel file-system.
Ethtool is often the tool that is widely use to debug system, and is generally themost complete system
for configuration and debug. Ethtool is a double edged-sword, because ethtool is vendor-centric the
output of its commands and range of configuration options will be slightly different depending on
which NIC is used.

Line Interface Statistics

Themost useful starting point when debugging the link-layer is to examine the line-interface statistics,
these are queried with ethtool -S <ethX> where ethX is the identifier of the NIC as listed by ifconfig, if
the device has multiple NICs and you are uncertain which NIC is receiving the traffic, run some traffic
and monitor the stats reported by ifconfig.

Note

The output of ethtool -S <ethX> is 100% NIC vendor specific and will be quite different depending
on NIC vendor used in your system.

214

https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.atlassian.net/servicedesk/customer/portal/8

Example: Output of ethtool -S:

NIC statistics:
rx_packets: 0
tx_packets: 0
rx_bytes: 0
tx_bytes: 0
rx_broadcast: 0
tx_broadcast: 0
rx_multicast: 0
tx_multicast: 0
rx_errors: 0
tx_errors: 0
tx_dropped: 0
multicast: 0
collisions: 0
rx_length_errors: 0
rx_over_errors: 0
rx_crc_errors: 0
rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: 0
tx_deferred_ok: 0
tx_single_coll_ok: 0
tx_multi_coll_ok: 0
tx_timeout_count: 52
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0
tx_tcp_seg_failed: 0
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0
rx_csum_offload_good: 0
rx_csum_offload_errors: 0
rx_header_split: 0
alloc_rx_buff_failed: 0
tx_smbus: 0
rx_smbus: 0
dropped_smbus: 0
rx_dma_failed: 0
tx_dma_failed: 0
rx_hwtstamp_cleared: 0
uncorr_ecc_errors: 0
corr_ecc_errors: 0
tx_hwtstamp_timeouts: 0
tx_hwtstamp_skipped: 0

215

MAC Errors

Users are mainly interested in the path where the sensor is transmitting to the workstation, focusing
on the “rx” (receive) statistics. Generally, anything that is labeled as rx.*error on this NIC constitutes
a stats that might be helpful in diagnosing the problem.

Based on theNIC, these “error” statistics are primarily associatedwith problems identified by theMAC.
Such problems are generally indicative of an L1 problem (though they could also indicate a problem
with the link-partner’s MAC), such as a loose connector, faulty transceiver, or an out-of-spec cable.

Internal System Errors

User might come across stats like rx_dma_failed and rx_no_buffer_count that do not have an “error”
postfix but constitute very real errors. These are indicative of failures in the hand-off between the NIC
driver.

Solving MAC Errors

If users encounter MAC errors this most likely points to a cabling issue, so the first step would be to
replace the cable. If the errors persist, the next step would be to try to test against a different node.
One can use the “iPerf” or “iPerf3” utility (discussed below) to validate that the workstation against
another workstation computer. A final step would be to swap out the sensor.

Solving Internal System Errors

These errors are often the most difficult to understand. It can be quite surprising that the MAC is
receiving everything and traffic is still being dropped. The root cause is generally that the processor
cannot handle the peak rate. Though the average load may be only a few hundred megabits, the real
situation is that all traffic received by the NIC arrives at line rate – for a 10G NIC this means that many
frames may be received back-to-back at the line rate of the NIC.

Just how many frames arrive depends on the behavior of the sensors. Ouster sensor attempts to
transmit the data as it is captured. Assuming a 40K (on the wire) LiDAR frame and 10 sensors, the
worst case load will be 40K x 10 = 400K at 10G (since the peak transmit rate of each sensor is 1G x
10 = 10G.) 400K is a lot of 10G data to process all at once, and without hardware buffering things will
certainly fail.

The NIC maintains a hardware ring-buffer or on advanced hardware, potentially multiple ring-buffers.
The entries in the ring-buffer are pointers into kernel packet-buffer structures. This mechanism en-
ables the NIC to efficiently deliver packets to the kernel at line rate. For our specific use-case the
default size of this ring-buffer may be too small.

To update this value user can use ethtool:

ethtool -g <ethX> will display the current setting and device limits

ethtool -G <ethX> rx <value> is used to update the setting

Example: Using a laptop/system, ring-buffer has enough buffer for 256 entries by default:

ethtool -g enp0s31f6
Ring parameters for enp0s31f6:
Pre-set maximums:
RX: 4096

(continues on next page)

216

(continued from previous page)
RX Mini: 0
RX Jumbo: 0
TX: 4096
Current hardware settings:
RX: 256
RX Mini: 0
RX Jumbo: 0
TX: 256

To find out how much buffer is sufficient we can apply the burst-tolerance equation:

fill_rate = NIC_line_speed - max_measured_throughput
fill_time = rx_buffer_size * 1518 * 8 / fill_rate
MBS = fill_time * NIC_line_speed

Note

It is not always easy to obtain max_measured_throughput, and in a busy workstation it can be
subject to variable delay.

As a rule-of-thumb we need to at least accommodate one max-burst (one LiDAR packet) from the
sensor. Assuming a 40KB LiDAR packet that’s 40KB/1518=27 frames. So 256 should be more than
adequate.

However, even with the default buffer of 256, user can observe packet loss due to DMA errors. This
is because the work-station is not a real-time system and the delay can be quite variable. Linux uses
a technique called interrupt coalescence that determines how often it will service the driver, when it
gets very busy.

Interrupt coalescence is controlled by the kernel filesystem key:

/proc/sys/net/core/netdev_budget_usecs and by default its 8000us!

If the problem is not resolved by increasing the buffer size, its possible to reduce net-
dev_budget_usecs in order to favor moving data over other activities that the system could be doing.
Its also possible to increase the maximum number of frames the OS is willing to process when the line
interface does get serviced which is controlled by:

/proc/sys/net/core/netdev_budget

Note

On some systems the user need to make the rx-ring-buffer quite large or disable interrupt coales-
cence all together.

In addition to the “soft” interrupt coalescence that is found under /proc/sys/net/core the NIC itself
will delay the hardware interrupt. User can find the settings with ethtool in the usual way. Here is an
example that shows the ACQ107’s default settings:

217

ethtool -c enp4s0
Coalesce parameters for enp4s0:
Adaptive RX: off
TX: off
stats-block-usecs: 0
sample-interval: 0
pkt-rate-low: 0
pkt-rate-high: 0
rx-usecs: 112
rx-frames: 0
rx-usecs-irq: 0
rx-frames-irq: 0
tx-usecs: 510
tx-frames: 0
tx-usecs-irq: 0
tx-frames-irq: 0
rx-usecs-low: 0
rx-frames-low: 0
tx-usecs-low: 0
tx-frames-low: 0
rx-usecs-high: 0
rx-frames-high: 0
tx-usecs-high: 0
tx-frames-high: 0

Another useful parameter is the /proc/sys/net/core/netdev_max_backlog. The backlog queue, is a
FIFO on the other side of the NIC ring-buffer. Increasing the backlog buffer is one more way to add
capacity earlier in the data-path. Its difficult to determine when to increase netdev_max_backlog vs
increasing the rx ring-buffer. Certainly the ring-buffer is the only place where we can add capacity
that can absorb traffic bursts at line rate.

Troubleshooting Advanced NICs

Advanced hardware interfaces have multiple ring-buffers that are typically mapped to different CPU
cores (a technique known as RSS.) Each NIC has its own proprietary scheme for mapping input traffic
flows to ring-buffers, and sometimes a NIC will incorrectly split a traffic flow into multiple FIFOs. If
you see this behavior it means that the NIC itself will cause frames to be reordered in a way that will
horribly disrupt the IP stack above it. The ACQ107 is one such NIC. The problem can be identified by
looking at ethtool -S <ethX>. The NIC will list stats for each FIFO, and by sending a single large traffic
flow we can see that device errantly split the flow into all of the different FIFOs. Below you can see
that this NIC has stats labeled Queue[0] … Queue[7].

Example:

ethtool -S enp4s0
NIC statistics:
InPackets: 350287807
InUCast: 350048688
InMCast: 231724
InBCast: 7395
InErrors: 0
OutPackets: 363162007
OutUCast: 363160208

(continues on next page)

218

(continued from previous page)
OutMCast: 1306
OutBCast: 493
InUCastOctets: 525223100117
OutUCastOctets: 545214487081
InMCastOctets: 16440320
OutMCastOctets: 206101
InBCastOctets: 1316312
OutBCastOctets: 58497
InOctets: 525240856749
OutOctets: 545214751679
InPacketsDma: 23207849
OutPacketsDma: 22064728
InOctetsDma: 34568308793
OutOctetsDma: 33164524696
InDroppedDma: 2002075
Queue[0] InPackets: 23087183
Queue[0] InJumboPackets: 0
Queue[0] InLroPackets: 0
Queue[0] InErrors: 0
Queue[0] AllocFails: 0
Queue[0] SkbAllocFails: 0
Queue[0] Polls: 7373190
Queue[0] OutPackets: 649028
Queue[0] Restarts: 0
Queue[1] InPackets: 80
Queue[1] InJumboPackets: 0
Queue[1] InLroPackets: 0
Queue[1] InErrors: 0
Queue[1] AllocFails: 0
Queue[1] SkbAllocFails: 0
Queue[1] Polls: 14672
Queue[1] OutPackets: 1651541
Queue[1] Restarts: 0
Queue[2] InPackets: 103
Queue[2] InJumboPackets: 0
Queue[2] InLroPackets: 0
Queue[2] InErrors: 0
Queue[2] AllocFails: 0
Queue[2] SkbAllocFails: 0
Queue[2] Polls: 215484
Queue[2] OutPackets: 3815296
Queue[2] Restarts: 0
Queue[3] InPackets: 269
Queue[3] InJumboPackets: 0
Queue[3] InLroPackets: 0
Queue[3] InErrors: 0
Queue[3] AllocFails: 0
Queue[3] SkbAllocFails: 0
Queue[3] Polls: 14469
Queue[3] OutPackets: 1580307
Queue[3] Restarts: 0
Queue[4] InPackets: 119681
Queue[4] InJumboPackets: 0
Queue[4] InLroPackets: 0

(continues on next page)

219

(continued from previous page)
Queue[4] InErrors: 0
Queue[4] AllocFails: 0
Queue[4] SkbAllocFails: 0
Queue[4] Polls: 157920
Queue[4] OutPackets: 3670607
Queue[4] Restarts: 0
Queue[5] InPackets: 83
Queue[5] InJumboPackets: 0
Queue[5] InLroPackets: 0
Queue[5] InErrors: 0
Queue[5] AllocFails: 0
Queue[5] SkbAllocFails: 0
Queue[5] Polls: 9006
Queue[5] OutPackets: 931971
Queue[5] Restarts: 0
Queue[6] InPackets: 407
Queue[6] InJumboPackets: 0
Queue[6] InLroPackets: 0
Queue[6] InErrors: 0
Queue[6] AllocFails: 0
Queue[6] SkbAllocFails: 0
Queue[6] Polls: 15387
Queue[6] OutPackets: 1636793
Queue[6] Restarts: 0
Queue[7] InPackets: 43
Queue[7] InJumboPackets: 0
Queue[7] InLroPackets: 0
Queue[7] InErrors: 0
Queue[7] AllocFails: 0
Queue[7] SkbAllocFails: 0
Queue[7] Polls: 11584
Queue[7] OutPackets: 343508
Queue[7] Restarts: 0
PTP Queue[16] InPackets: 0
PTP Queue[16] InJumboPackets: 0
PTP Queue[16] InLroPackets: 0
PTP Queue[16] InErrors: 0
PTP Queue[16] AllocFails: 0
PTP Queue[16] SkbAllocFails: 0
PTP Queue[16] Polls: 0
PTP Queue[16] OutPackets: 0
PTP Queue[16] Restarts: 0
PTP Queue[31] InPackets: 0
PTP Queue[31] InJumboPackets: 0
PTP Queue[31] InLroPackets: 0
PTP Queue[31] InErrors: 0
PTP Queue[31] AllocFails: 0
PTP Queue[31] SkbAllocFails: 0
PTP Queue[31] Polls: 0
MACSec InCtlPackets: 0
MACSec InTaggedMissPackets: 0
MACSec InUntaggedMissPackets: 23252064
MACSec InNotagPackets: 23252064
MACSec InUntaggedPackets: 0

(continues on next page)

220

(continued from previous page)
MACSec InBadTagPackets: 0
MACSec InNoSciPackets: 0
MACSec InUnknownSciPackets: 0
MACSec InCtrlPortPassPackets: 0
MACSec InUnctrlPortPassPackets: 23252064
MACSec InCtrlPortFailPackets: 0
MACSec InUnctrlPortFailPackets: 0
MACSec InTooLongPackets: 0
MACSec InIgpocCtlPackets: 0
MACSec InEccErrorPackets: 0
MACSec InUnctrlHitDropRedir: 0
MACSec OutCtlPackets: 1
MACSec OutUnknownSaPackets: 22064727
MACSec OutUntaggedPackets: 0
MACSec OutTooLong: 0
MACSec OutEccErrorPackets: 0
MACSec OutUnctrlHitDropRedir: 0

The vendor provided a workaround in their README.

Note

RSS for UDP

Currently, NIC does not support RSS for fragmented IP packets, which leads to an incorrect han-
dling of RSS for fragmented UDP traffic. To disable RSS for UDP one can use the following RX Flow
L3/L4 rule: ethtool -N eth0 flow-type udp4 action 0 loc 32

When Stats Fail

Sometimes a NIC will drop frames without any error stats incrementing. When this happens, the issue
can be detected by inserting a managed L2 switch in between the sensor and the workstation. The
managed switch will report receive and transmit stats, which can be correlated against the rx stats of
the NIC to determine that the NIC has dropped frames without incrementing any stat.

16.3.2 IP Statistics

After the link layer the next layer up is IP. IP errors can be identified with the netstat tool:

netstat -s

This tool will output a lot of information, but in this document we will focus on only the IP section.

In this report you can see that there are a few different error categories, and you have to review care-
fully through all of the text to find them:

Let’s look at each class of error and consider its implications:

Packets received with invalid address means that they were sent to our MAC, but with an incor-

221

https://github.com/Aquantia/AQtion/blob/master/README.txt

rect source IP.

Packets dropped because of missing route indicates that the packet was sent to the correct IP
address but no client program was listening on the destination port.

Fragments dropped after timeoutmeans that we received some data but subsequent data didn’t
arrive in time to be processed.

Fragments reassemblies failed means that some data was missing due to an Ethernet frame
being aborted by the stack or being lost in transit and the IP layer was not able to reassemble a
complete datagram.

Debugging a Layer 3 Issue

The best way to debug issues in the IP layer is to find them in the link layer, because generally speaking
layer-3 issues are caused by layer-2 bugs, but this is not always the case.

For instance, packets received with invalid address are probably indicative of stale ARP table entries
or some other external network bug or temporal state that will most likely clear up on its own. This
sort of problem is probably not worth debugging unless its persistent. Packets dropped because of
missing route is more indicative of an issue at the application layer (the client or server simply wasn’t
listening when the packets arrived).

If a problem is detectable by L3 and not by L2, then it’s most likely a problem in the NIC itself, and if
the NIC isn’t providing a FIFO or DMA stat that explains it. One possibility is packet reordering by the
NIC. This can be detected by modifying

/proc/sys/net/ipv4/ipfrag_max_dist

This kernel attribute determines the systems tolerance to receiving out-of-order IPv4 frames. Nom-
inally L2 networks do not reorder packets, so you should be able to configure a value of 1 and not
observe a change in behavior. However, if setting a low threshold exacerbates the issue, or setting a
high value makes the problem less severe then the NIC is most likely to blame.

16.3.3 Useful network debugging tools

iPerf

iPerf is a useful tool when debugging the performance of a network. It can be used to quickly validate
whether or not a system can handle a given throughput. It can be configured to output a stream of
data in a variety of formats tomimic the expected load on the systemduring use. Formore information
refer to iPerf documentation.

How to use iPerf to debug sensor network issues

iPerf can be used to rule out sensor failures, and quickly reproduce errors that occur when the network
is under a high-traffic load. iPerf must be used from two machines:

Server (receiving data)

Client (sending data)

Both the server and client will measure the number of packets sent/received, and report a percentage
of packets lost.

222

https://iperf.fr/iperf-doc.php

Example usage of iPerf to test sender can send 300Mbps of UDP packets of 20KB to receiver:

Receiver arguments

--server : Required to indicate that this is the machine that will be RECEIVING data.

--port 5300 : Specify the port at which to listen for incoming data. Useful if testing with multiple
sources simultaneously.

Sender arguments

--client 192.168.88.248 : The IP address to send data to. Must be the IP address or hostname
of the receiver.

--port 5300 : The port to send data to. This must match the –port argument provided by the
receiver.

--udp : Indicates that UDP traffic will be sent. If not supplied, TCP data will be sent.

--bitrate 300M : The rate in (in bits per second) to send data to the receiver. This can be used to
simulate different amounts of network load.This supports a suffix such as K , M , or G to indicate
Kbps, Mbps, or Gbps instead of bps.

--length 20K

223

17 Errata and Notices

Note

This section provides more information on new feature releases and certain bug fixes which might
help users understand correct working/operation of the sensor.

17.1 Firmware v3.0.x Safety Notice

Date:

May 2024

Change Type:

Firmware 3.0.x

Description of change

Ouster is issuing a safety notice for all Ouster lidar sensors running firmware v3.0.x. Ouster has iden-
tified a scenario where sensors running firmware v3.0.x will remove valid data from the point cloud
between the sensor window and 6 m, when the sensor window is dirty or partially obscured. In this
scenario, data beyond 6 m is unaffected. However, valid data between the sensor window and 6 m is
removed.

For users that rely on Ouster lidar sensors for obstacle detection in a dirty environment within 6 m,
this unanticipated removal of data may lead to unsafe assumptions at the system level.

As an immediate solution, we recommend all users upgrade to firmware v3.1 or later (Download Page).
Firmware v3.1 solves this issue robustly, in addition to providing several benefits such as improved
obscurant/dirty window operation, new features, and other quality-of-life improvements. Please refer
to the Firmware Changelog for more information on the additional changes, features, and fixes.

For customers who may be unable to upgrade firmware immediately, but are reliant on data between
0 m - 6 m in a dirty or obscurant-filled environment, we recommend regularly cleaning the sensor
window and avoid placing reflective surfaces closer than 1m to the sensor window.

Affected Products

All configurations of Rev7 OSDome, OS0, and OS1 sensors running Firmware 3.0.x (all firmware ver-
sions prior to 3.1).

Approximate implementation date of bug fix in Firmware

Firmware v3.1 is available today (May 2024) - Download Page.

224

https://ouster.com/downloads/
https://ouster.com/downloads/

Proposed workaround

Some customers may not be able to update the firmware version v3.1 and later. In such cases, the
following workarounds can be used TEMPORARILY:

For customers who may be unable to upgrade firmware immediately, but are reliant on data between
0m - 6m in a dirty or obscurant-filled environment, we recommend regularly cleaning the sensor win-
dow and avoid placing reflective surfaces closer than 1m to the sensor window.

In case of any questions or concerns, Please contact Ouster Support.

17.2 Sensor restarts after long-term continuous operation

Change Type:

Firmware Bug (Affects FW v3.0, FW v2.5.2 and prior)

Approximate implementation date of bug fix in Firmware:

FW 2.5.3 and FW 3.1 will be available in Q1 2024.

Description of change:

All Ouster lidars running firmware versions prior to v2.5.3 and v3.1 will restart approximately every 36
- 118 days when left continuously operating in the RUNNING state; after three of such restarts sensors
will enter ERROR state requiring a power cycle of the sensor. The issue is fixed in firmware versions
v2.5.3 and v3.1. This issue can bemitigated by proactively fully power cycling the sensor at least once
every 36 days.

Benefit of change:

All customers are strongly recommended to upgrade to the latest firmware version that fixes this
issue. If this is not possible, refer to Proposed workaround section for a way to mitigate the issue.

Affected Products:

For sensors running firmware versions 1.x or 2.x, all firmware versions prior to 2.5.3.

For sensors running firmware versions 3.x, all firmware versions prior to 3.1.

Across all HW versions (Gen1, RevC, RevD, Rev5, Rev6, Rev7), all sensor variants OS0, OS1, OS2, OS-
Dome.

Detailed description:

Sensors operating in the RUNNING state continuously (without restart/Power-cycle) will continue to op-
erate until approximately the specified number of days in the table belowhave elapsed. This timeframe
is contingent on the configured lidar mode. After this number of days elapses, if the sensor remains
in the RUNNING state, it will restart automatically and raise alerts 0x100003d and 0x100003e, and go back
to the RUNNING state. After this time period elapses 3 times, the sensor will transition to the ERROR state
and log the alert 0x1000040.

225

https://ouster.com/tech-support

Table 17.1: Table

Sensor state Lidar mode Approximate time until
automatic restart

Maximum restarts until
ERROR state

INITIALIZING N/A N/A N/A

ERROR N/A N/A N/A

STANDBY N/A N/A N/A

RUNNING 2048x10, 1024x20 ~36 days 3

RUNNING 1024x10, 512x20 ~67 days 3

RUNNING 512x10 ~118 days 3

Note

All customers are strongly recommended to upgrade to the latest firmware version that fixes this
issue. If this is not possible, please refer to the Proposed workaround section below for a way to
mitigate the issue.

17.2.1 Proposed workaround

Some customers may not be able to update the firmware version to the latest firmware version. In
such cases the following workarounds can be used:

Mitigation 1:

The error condition can be preempted by the user proactively power cycling the sensor at a convenient
time before the error occurs.

Mitigation 2:

Send any compatible Ouster firmware update to the sensor using the dry_run=1 argument. This will
not actually perform any update and the sensor will restart afterwards.

Example Command (Linux):

curl -vH 'Content-Type: application/octet-stream' --data-binary @ousteros-image-prod-bootes-v3.0.
1+20230209044733.img 'http://192.0.2.123/api/v1/system/firmware?dry_run=1'

POST /api/v1/system/firmware?dry_run=1 HTTP/1.1
Host: 192.0.2.123

(continues on next page)

226

(continued from previous page)

User-Agent: curl/7.68.0
Accept: */*
Content-Type: application/octet-stream
Content-Length: 42134428
Expect: 100-continue

Mark bundle as not supporting multiuse
HTTP/1.1 100 Continue
We are completely uploaded and fine
Mark bundle as not supporting multiuse
HTTP/1.1 204 No Content
Server: nginx
Date: Thu, 28 Apr 2022 17:49:58 GMT
Connection: keep-alive

Connection #0 to host 192.0.2.123 left intact

Mitigation 3:

Update the sensor firmware with the same firmware version running on the sensor. The sensor will
automatically restart after the update completes.

Example Command (Linux):

curl -vH 'Content-Type: application/octet-stream' --data-binary @ousteros-image-prod-bootes-v3.0.
1+20230209044733.img 'http://192.0.2.123/api/v1/system/firmware'

POST /api/v1/system/firmware HTTP/1.1
Host: 192.0.2.123

User-Agent: curl/7.68.0
Accept: */*
Content-Type: application/octet-stream
Content-Length: 42134428
Expect: 100-continue

Mark bundle as not supporting multiuse
HTTP/1.1 100 Continue
We are completely uploaded and fine
Mark bundle as not supporting multiuse
HTTP/1.1 204 No Content
Server: nginx
Date: Thu, 28 Apr 2022 17:49:58 GMT
Connection: keep-alive

Connection #0 to host 192.0.2.123 left intact

227

Sensor Firmware can also be updated by using the Sensor WebUI. Please refer to the Sensor Web
Interface for more information on how to update the firmware using the Sensor WebUI.

Mitigation 4:

Alternatively, performing DELETE of the sensor configuration will also cause the sensor to reboot and
reset the internal counter. After DELETE of the sensor configuration is performed, the sensor can be
reconfigured. Issuing a reinit command or reconfiguring the sensor will not reset this counter or
prevent this error condition from occurring.

DELETE /api/v1/sensor/config

Example HTTP command:

http DELETE 192.0.2.123/api/v1/sensor/config

Example curl command:

curl -i -X DELETE http://192.0.2.123/api/v1/sensor/config -H 'Content-Type: application/json'

DELETE /api/v1/sensor/config HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 204 No Content
Connection: keep-alive
Date: Mon, 10 Jul 2023 17:12:47 GMT
Server: nginx

Note

In addition to the sensor configuration being reset to the factory default settings, fields such as
Static IP override, PTP profiles and the User Editable Data filed will be reset. Each of these mitiga-
tions resets the internal counters andwill need to be performed periodically before the error occurs
to be effective.

Recovery:

If the sensor reaches the ERROR state because it operated for long enough and a workaround was not
performed, the counter can be reset by reconfiguring the sensor or issuing a reinit API command.

In case of any questions or concerns, Please contact Ouster Support.

228

https://ouster.com/tech-support

18 Firmware Changelog
Firmware versions (3.0 & later) are only compatible on OS0/OS1/OSDome Hardware versions Rev7 and
later. Please refer to FW 2.x or prior if you have hardware version Rev7 OS2, Rev 06 OS0/OS1/OS2
and prior generation sensors.

18.1 Firmware v3.1.0

Date
May 2024

Description

“Added”

Add LowData Rate Dual Return profile i.e., FUSA_RNG15_RFL8_NIR8_DUALReturn Profile.

Add config parameter for min_range_threshold_cm (Refer to min_range_threshold_cm for
more information).

Add config parameter for return_order (Refer to return_order for more information).

Add config parameter for Delete Config (Refer to DELETE /api/v1/sensor/config for more
information).

Add PTP L2 E2E support, via a new PTP profile “default-l2-relaxed”.

Add new alerts, please refer to Table of All Alerts and Errors section for more information.

Add config parameter for User Editable Data section in the API user guide, this field can
be used for a number of purposes such as storing specific information about the sensor,
qualifying a sensor, calibration data, or any other information.

Add config parameter forPOST /api/v1/system/restart to restart sensor or reinitialize a sen-
sor.

Add End-to-End Cyclic Redundancy Check (CRC) in configurable data packet format.

Add config parameter for GET /api/v1/sensor/metadata/imu_data_format. User can get
imu_data_format and POST config to change gyro_fsr and accel_fsr from NORMAL to EXTENDED.

Add Alert Flags in Lidar data packet. All of the udp_lidar_profile have been updated to
include alert flags at the packet level.

“Improved”

Improved robustness for cold start.

Reduced the occurrence of false alerts for VCSEL_CURRENT_LOW.

Improved motor stability when decelerating to lower RPM during lidar mode switches.

Minor PTP software update and reduced fault recovery time.

229

Improved existing alerts to notify users when the network is not reachable. This enhance-
ment enables users to promptly address connectivity issues, improving the overall reliabil-
ity of the system.

Improved startup time/reinit time by ~10-15 seconds.

Improved sensor’s webUI (Sensor Web Interface) to display client and UDP destination ad-
dress.

Allow IMU port to be set to 0 to disable IMU packet transmission.

Improved recovery after Ethernet link loss that previously caused UDP stream to stall.

“Fixed”

Apply PPS setting in STANDBY in order for api/v1/time/sensor to reflect provisioned configu-
ration in STANDBY.

Fixed handling of NMEA messages with fractional seconds. Previously, If NMEA sentence
contains a fraction of a second time, the sensor would round the fraction up resulting into
a future timestamp. This has been fixed.

Fixed PPS/NMEA lock and time synchronisation. Previously, Sensor does not lock when
gps is connected and Sync pulse in is selected. The sensor does not lock to an external
PPS signal from GPS. This has now been fixed.

Correct IMU polling rate to 100hz.

Fixed GET /api/v1/sensor/alerts input cursor correctly limits alert log.

Fixed timestamp loop in PPSmodewhen PPS signal is lost. Timestampwill free-run instead
of looping.

Fixed sensor error that occurred when using continuously for 1-4 months depending on
mode. Please refer to Errata and Notices for more information.

Support for local udp_dest address via sensor Web_UI.

Fixed a bug where the lidar starts to send data when powering ON before establishing con-
nection with the client machine.

Fixed a bug where the sensor would be stuck in UNKNOWN state during multiple API requests
while streaming point clouds.

Fixed Alert section i.e., categories changed from WARNING to ERROR. No functional changes to
alert behavior.

Fixed a bug in point cloud behaviour that caused highly reflective objects belowmin_range
to make other objects disappear.

Fixed a bug that prevents sensor from going into ERROR stopped state or restarting while
doing cold start. This improves the reliability and overall robustness of the cold start path.

“Changed”

Replaced mDNS name from _roger._tcp to _ouster-lidar._tcp. _roger._tcp is in planned
deprecation.

Replaced alert category for CONFIG_INVALID to `CONFIG. Please refer to alerts and error section
in the firmware user manual.

“Removed”

230

TCP API has now been DEPRECATED in FW 3.1. Please refer to HTTP API Reference Guide
section instead.

LEGACY Data packet profile has been DEPRECATED, please refer to Lidar Data Packet
Format for more information.

18.2 Firmware v3.0.1

Date
February 2023

Description

“Updated”

beam_to_lidar_transform for Rev7 OS0 and OS1 sensors.

lidar_to_sensor_transform for Rev7 OSDOME sensors.

“Added”

New HTTP Command to configure speed override (Refer to System)

18.3 Firmware v3.0.0

Date
January 2023

Description

“Fixed”

Bug Fix in High Input Voltage Alert behavior.

Bug in keep-alive behavior for HTTP 1.1.

Bug fix in get_lidar_data_format.

“Improvements”

Improved point cloud behavior due to enhanced retro-reflector range accuracy improve-
ment.

“Changed”

Default value of udp_profile_lidar will be set to single return profile. For more information
refer to RNG19_RFL8_SIG16_NIR16 Return Profile.

“Added”

1024x20 and 2048x10 lidar modes with dual returns.

Shot limiting status flags and thermal shutdown.

231

Azimuth laser masking.

Two new Signal multiplier modes - 0.25 and 0.5 Mode.

New alerts, refer to Table of All Alerts and Errors.

232

	Important Safety Information
	Safety & Legal Notices
	Compliance Certifications for Ouster Rev7 Sensors
	Definition of Symbols on the Sensor label

	Proper Assembly, Maintenance and Safe Use
	Assemblage correct et utilisation sûre

	Quick Start Guide
	What’s in the box
	Sensor Setup
	Network Configuration
	Sensor Web Interface
	Updating Firmware

	Typical Sensor Operation
	Sensor Data
	Coordinate Frames and XYZ Calculation
	Lidar Coordinate Frame
	Lidar Range to XYZ
	Sensor Coordinate Frame
	Combining Lidar and Sensor Coordinate Frame
	Lidar Intrinsic Beam Angles
	Lidar Range Data To Sensor XYZ Coordinate Frame
	IMU Data To Sensor XYZ Coordinate Frame

	Lidar Data Packet Format
	Configurable Data Packet Format
	Lidar Data Format
	Packet layout
	E2E CRC64 calculation parameters

	Channel Data Profiles
	RNG19_RFL8_SIG16_NIR16 Return Profile
	RNG15_RFL8_NIR8 Return Profile
	RNG19_RFL8_SIG16_NIR16_DUAL Return Profile

	FUSA_RNG15_RFL8_NIR8_DUAL Return Profile
	Lidar Data Format
	Packet layout

	Packet Size Calculation

	LEGACY Data Packet Format
	Calibrated Reflectivity
	Reflectivity Data Mapping

	IMU Data Format
	Configurable IMU Scale

	Feature Guides
	Cold Start
	Hardware Requirements
	Cold Start Operation
	Indications and Alerts

	Sensor Telemetry
	GET /api/v1/sensor/telemetry

	Azimuth Window
	Expected Sensor Behavior
	Azimuth Laser Masking
	Azimuth Window Examples

	Standby Operating Mode
	Expected Sensor Behavior
	Standby Operating Mode Examples

	Signal Multiplier
	Use Cases
	Expected Behavior

	Sensor Performance by Operating Configuration
	Estimated range multiplier
	Maximal representable range

	Shot Limiting
	Minimum Range Threshold
	Configuring min_range
	Use Cases

	Return Order
	Overview
	Sorting Returns

	User Editable Data Field
	Example Use Case:
	Proposed Solution:
	Implementation of the Proposed Solution:
	Customer Signing Process:
	Customer System Validation:
	HTTP Endpoints for User Editable Field (UEF)
	HTTP Endpoints for Optional Parameters - data policy
	Optional Parameters - include_metadata

	Multi-Sensor Synchronization
	Phase Lock
	Phase Locking Reference Frame
	Phase Locking Commands
	Multi-sensor Example
	Accuracy
	Phase Locking Alerts

	Inter-sensor Interference Mitigation
	Two Sensor Example

	Time Synchronization
	Timing Overview Diagram
	Sensor Time Source
	Setting Ouster Sensor Time Source
	External Trigger Clock Source
	Examples

	NMEA Message Format
	Example 1 Message:
	Example 2 Message:

	GPS/GNSS Synchronization Guide
	Configuring the Ouster Sensor
	Checking for Sync

	Sensor Configuration
	Overview
	Description
	udp_dest
	udp_port_lidar
	udp_port_imu
	sync_pulse_in_polarity
	sync_pulse_out_polarity
	sync_pulse_out_frequency
	sync_pulse_out_angle
	sync_pulse_out_pulse_width
	nmea_in_polarity
	nmea_ignore_valid_char
	nmea_baud_rate
	nmea_leap_seconds
	azimuth_window
	signal_multiplier
	udp_profile_lidar
	udp_profile_imu
	phase_lock_enable
	phase_lock_offset
	lidar_mode
	timestamp_mode
	multipurpose_io_mode
	operating_mode
	min_range_threshold_cm
	return_order
	gyro_fsr
	accel_fsr

	HTTP API Reference Guide
	Sensor Metadata
	GET /api/v1/sensor/metadata/sensor_info
	GET /api/v1/sensor/metadata/lidar_data_format
	GET /api/v1/sensor/metadata/imu_data_format
	GET /api/v1/sensor/metadata/beam_intrinsics
	GET /api/v1/sensor/metadata/imu_intrinsics
	GET /api/v1/sensor/metadata/lidar_intrinsics
	GET /api/v1/sensor/metadata/calibration_status
	GET /api/v1/sensor/config
	POST /api/v1/sensor/config – Multiple configuration parameters
	GET /api/v1/sensor/config/operating_mode
	PUT /api/v1/sensor/config/operating_mode
	DELETE /api/v1/sensor/config
	GET /api/v1/sensor/metadata

	User Editable Data
	GET /api/v1/user/data
	PUT /api/v1/user/data
	DELETE /api/v1/user/data
	Optional Parameters – data policy
	PUT /api/v1/user/data?policy=clear_on_config_delete
	PUT /api/v1/user/data?policy=keep_on_config_delete

	Optional Parameters – include_metadata
	GET /api/v1/user/data?include_metadata=true
	GET /api/v1/user/data?include_metadata=false

	System
	POST /api/v1/system/restart
	GET /api/v1/system/firmware
	POST /api/v1/system/firmware
	GET /api/v1/system/network
	GET /api/v1/system/network/ipv4
	GET /api/v1/system/network/ipv4/override
	PUT /api/v1/system/network/ipv4/override
	DELETE /api/v1/system/network/ipv4/override
	GET /api/v1/system/network/speed_override
	PUT /api/v1/system/network/speed_override
	DELETE /api/v1/system/network/speed_override

	Time
	GET /api/v1/time
	GET /api/v1/time/sensor
	GET /api/v1/time/system
	GET /api/v1/time/ptp
	GET /api/v1/time/ptp/profile
	PUT /api/v1/time/ptp/profile

	Alerts, Diagnostics and Telemetry
	GET /api/v1/sensor/alerts
	Alerts Example

	GET /api/v1/sensor/alerts?cursor=1
	GET /api/v1/sensor/alerts?mode=summary
	GET /api/v1/sensor/alerts?cursor=2&mode=summary
	GET /api/v1/diagnostics/dump
	GET /api/v1/sensor/telemetry

	TCP API Guide (Deprecated)
	API Changelog
	Firmware v3.1.0
	Firmware v3.0.1
	Firmware v3.0.0

	Troubleshooting
	Sensor Homepage and HTTP Server
	Networking
	Using Latest Firmware
	Alerts and Errors
	Alerts Example
	Table of All Alerts and Errors

	Networking Guide
	Networking Terminology
	Windows
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	macOS
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	Linux
	Connecting the Sensor
	Setting the Interface to Link-Local Only
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	Appendix
	PTP Profiles Guide
	Overview
	PTP Profiles

	PTP HTTP API
	Enabling the PTP profiles
	Example using cURL
	Example using HTTPie
	Sync Verification

	PTP Quickstart Guide
	Overview
	Assumptions
	Physical Network Setup
	Third Party Grandmaster Clock
	Linux PTP Grandmaster Clock
	Example Network Setup
	Installing Necessary Packages
	Ethernet Hardware Timestamp Verification

	Configurations
	Configuring ptp4l for Multiple Ports
	Configuring ptp4l as a Local Master Clock
	Configuring phc2sys to Synchronize the System Time to the PTP Clock
	Configuring Chrony to Set System Clock Using PTP

	Verifying Operation
	LinuxPTP PMC Tool
	Tested Grandmaster Clocks

	Analyzing Linux Networking Issues
	Link Layer Statistics and Configuration
	IP Statistics
	Useful network debugging tools

	Errata and Notices
	Firmware v3.0.x Safety Notice
	Sensor restarts after long-term continuous operation
	Proposed workaround
	Mitigation 1:
	Mitigation 2:
	Mitigation 3:
	Mitigation 4:

	Firmware Changelog
	Firmware v3.1.0
	Firmware v3.0.1
	Firmware v3.0.0

