
Firmware User Manual
Firmware v2.3.1 for all Ouster sensors

Ouster

Jul 25, 2022

Contents
1 Important Safety Information 6

1.1 Safety & Legal Notices . 6
1.2 Proper Assembly, Maintenance and Safe Use . 9

1.2.1 Assemblage correct et utilisation sûre . 10

2 Firmware Introduction 11

3 Connecting to Sensor 11
3.1 What’s in the box . 11
3.2 Sensor Setup . 12
3.3 Network Configuration . 13
3.4 Web Interface . 15

4 Updating Firmware 16
4.1 Software Resources . 18

5 Sensor Data 20
5.1 Coordinate Frames and XYZ Calculation . 20

5.1.1 Lidar Coordinate Frame . 20
5.1.2 Lidar Range to XYZ . 21
5.1.3 Sensor Coordinate Frame . 23
5.1.4 Combining Lidar and Sensor Coordinate Frame . 24
5.1.5 Lidar Intrinsic Beam Angles . 24
5.1.6 Lidar Range Data To Sensor XYZ Coordinate Frame 24
5.1.7 IMU Data To Sensor XYZ Coordinate Frame . 25

6 Lidar Data Packet Format 26
6.1 Configurable Data Packet Format . 26

6.1.1 Lidar Data Format . 26
6.1.2 Channel Data Profiles . 29
6.1.3 Single Return Profile . 29
6.1.4 Low Data Rate Profile . 32
6.1.5 Dual Return Profile . 34
6.1.6 Packet Size Calculation (Configurable) . 36

6.2 LEGACY Data Packet Format . 37
6.2.1 Lidar Data Format . 37
6.2.2 Packet Size Calculation (LEGACY) . 40

6.3 Calibrated Reflectivity . 41
6.3.1 Reflectivity Data Mapping . 41

6.4 IMU Data Format . 43

7 Sensor Operations 45
7.1 Typical Sensor Operation . 45
7.2 Sensor Telemetry . 46
7.3 Cold Start . 47

7.3.1 Hardware Requirements . 47
7.3.2 Cold Start Operation . 47
7.3.3 Indications and Alerts . 48

7.4 Azimuth Window . 48

2

7.4.1 Expected Sensor Behavior . 49
7.4.2 Azimuth Window Examples . 50

7.5 Standby Operating Mode . 50
7.5.1 Expected Sensor Behavior . 51
7.5.2 Standby Operating Mode Examples . 51

7.6 Signal Multiplier . 52
7.6.1 Use . 52
7.6.2 Expected Behavior . 53
7.6.3 Examples . 53

7.7 Sensor Performance by Operating Configuration . 54
7.7.1 Estimated range multiplier . 54
7.7.2 Estimated precision multiplier . 55

8 Multi-Sensor Synchronization 56
8.1 Phase Lock . 56

8.1.1 Phase Locking Reference Frame . 56
8.1.2 Phase Locking Commands . 57
8.1.3 Multi-sensor Example . 58
8.1.4 Accuracy . 59
8.1.5 Phase Locking Alerts . 59

8.2 Inter-sensor Interference Mitigation . 60
8.2.1 Two Sensor Example . 60

9 Time Synchronization 62
9.1 Timing Overview Diagram . 62
9.2 Sensor Time Source . 63

9.2.1 Setting Ouster Sensor Time Source . 63
9.2.2 External Trigger Clock Source . 65

9.3 NMEA Message Format . 66
9.3.1 Example 1 Message: . 67
9.3.2 Example 2 Message: . 68

10 GPS/GNSS Synchronization Guide 69
10.1 Configuring the Ouster Sensor . 69

10.1.1 Checking for Sync . 69

11 TCP API Guide 72
11.1 Querying Sensor Info and Intrinsic Calibration . 72
11.2 Querying Active or Staged Parameters . 84
11.3 Setting Configuration Parameters . 87

12 HTTP API Reference Guide 92
12.1 Sensor Metadata . 92

12.1.1 GET /api/v1/sensor/metadata/sensor_info . 92
12.1.2 GET /api/v1/sensor/metadata/lidar_data_format 93
12.1.3 GET /api/v1/sensor/metadata/beam_intrinsics . 94
12.1.4 GET /api/v1/sensor/metadata/imu_intrinsics . 95
12.1.5 GET /api/v1/sensor/metadata/lidar_intrinsics . 96
12.1.6 GET /api/v1/sensor/metadata/calibration_status . 96
12.1.7 GET /api/v1/sensor/metadata . 97

12.2 System . 99
12.2.1 GET /api/v1/system/firmware . 99

3

12.2.2 GET /api/v1/system/network . 100
12.2.3 GET /api/v1/system/network/ipv4 . 101
12.2.4 GET /api/v1/system/network/ipv4/override . 101
12.2.5 PUT /api/v1/system/network/ipv4/override . 102
12.2.6 DELETE /api/v1/system/network/ipv4/override . 102

12.3 Time . 103
12.3.1 GET /api/v1/time . 103
12.3.2 GET /api/v1/time/sensor . 105
12.3.3 GET /api/v1/time/system . 107
12.3.4 GET /api/v1/time/ptp . 108
12.3.5 GET /api/v1/time/ptp/profile . 110
12.3.6 PUT /api/v1/time/ptp/profile . 110

12.4 Alerts, Diagnostics and Telemetry . 111
12.4.1 GET /api/v1/sensor/alerts . 111
12.4.2 GET /api/v1/diagnostics/dump . 114
12.4.3 GET /api/v1/sensor/telemetry . 114

13 API Changelog 116

14 Troubleshooting 122
14.1 Sensor Homepage and HTTP Server . 122
14.2 Networking . 122
14.3 Get Alerts . 122
14.4 Using Latest Firmware . 124

15 Alerts and Errors 125
15.1 Table of All Alerts and Errors . 125

16 Networking Guide 133
16.1 Networking Terminology . 133
16.2 Windows . 134

16.2.1 Connecting the Sensor . 134
16.2.2 The Sensor Homepage . 135
16.2.3 Determining the IPv4 Address of the Sensor . 135
16.2.4 Determining the IPv4 Address of the Interface . 136
16.2.5 Setting the Host Interface to DHCP . 137
16.2.6 Setting the Host Interface to Static IP . 137
16.2.7 Finding a Sensor with mDNS Service Discovery . 137

16.3 macOS . 140
16.3.1 Connecting the Sensor . 140
16.3.2 The Sensor Homepage . 140
16.3.3 Determining the IPv4 Address of the Sensor . 140
16.3.4 Determining the IPv4 Address of the Interface . 141
16.3.5 Setting the Host Interface to DHCP . 142
16.3.6 Setting the Host Interface to Static IP . 143
16.3.7 Finding a Sensor . 143

16.4 Linux . 146
16.4.1 Connecting the Sensor . 146
16.4.2 Setting the Interface to Link-Local Only . 147
16.4.3 The Sensor Homepage . 148
16.4.4 Determining the IPv4 Address of the Sensor . 148
16.4.5 Determining the IPv4 Address of the Interface . 150

4

16.4.6 Setting the Host Interface to DHCP . 151
16.4.7 Setting the Host Interface to Static IP . 152
16.4.8 Finding a Sensor with mDNS Service Discovery . 153

17 Firmware Changelog 155

18 Appendix 158
18.1 Features / Releases Support Table . 158
18.2 Lidar Packet Format Update . 159
18.3 Lidar format update appearing in v2.2.0 . 160
18.4 PTP Profiles Guide . 160

18.4.1 PTP Profiles . 160
18.4.2 PTP HTTP API . 160
18.4.3 Enabling the PTP profiles . 161
18.4.4 Example using cURL . 161
18.4.5 Example using Httpie . 161
18.4.6 Sync Verification . 161

18.5 PTP Quickstart Guide . 162
18.5.1 Assumptions . 162
18.5.2 Physical Network Setup . 162
18.5.3 Third Party Grandmaster Clock . 162
18.5.4 Linux PTP Grandmaster Clock . 163
18.5.5 Example Network Setup . 163
18.5.6 Installing Necessary Packages . 163
18.5.7 Ethernet Hardware Timestamp Verification . 164
18.5.8 Configurations . 165
18.5.9 Verifying Operation . 169

18.6 Sensor PTP Sync Verification . 169
18.6.1 LinuxPTP PMC Tool . 171
18.6.2 Tested Grandmaster Clocks . 172

18.7 Analyzing Linux Networking Issues . 173
18.7.1 Link Layer Statistics and Configuration . 173
18.7.2 IP Statistics . 180
18.7.3 Useful network debugging tools . 181

18.8 Updating Firmware . 182
18.9 Downgrading Firmware . 183

5

1 Important Safety Information

1.1 Safety & Legal Notices

All Ouster sensors have been evaluated to be Class 1 laser products per 60825-1: 2014 (Ed. 3) and
operate in the 865nm band.

Tous les capteurs Ouster répondent aux critères des produits laser de classe 1, selon la norme IEC
60825-1: 2014 (3ème édition) et émettent dans le domaine de l’infrarouge, à une longueur d’onde
de 865nm environ.

FDA 21CFR1040 Notice: All Ouster sensors comply with FDA performance standards for laser prod-
ucts except for deviations pursuant to Laser Notice No. 56, dated January 19, 2018.

Notice FDA 21CFR1040: Tous les capteurs Ouster sont conformes aux exigences de performances
établies par la FDA pour les produits laser, à l’exception des écarts en application de l’avis nº56, daté
du 19 janvier 2018.

Figure 1.1: Class 1 Laser Product

Figure 1.2: Caution “Sharp Edges”

The following symbols appear on the product label and in the usermanual have the followingmeaning.

CAUTIONS

6

Figure 1.3: This symbol indicates that the sensor emits laser radiation.

Figure 1.4: This symbol indicates the presence of a hot surface that may cause skin burn.

All Ouster sensors are hermetically sealed unit, and are non user-serviceable.

Use of controls, or adjustments, or performance of procedures other than those specified herein,
may result in hazardous radiation exposure.

Use of any Ouster sensor is subject to the Terms of Sale that you agreed and signed with Ouster
or your distributor/integrator. Included in these terms are the prohibitions of:

Removing or otherwise opening the sensor housing

Inspecting the internals of the sensor

Reverse-engineering any part of the sensor

Permitting any third party to do any of the foregoing

Operating the sensor without the attached mount that is shipped with the sensor, or attaching
the sensor to a surface of inappropriate thermal capacity runs the risk of having the sensor
overheat under certain circumstances.

The Ouster sensor features a modular cap design to enable more flexible mounting and integra-
tion solutions for the sensor.

The modular cap design increases design flexibility but it does not remove the need for ther-
mal management on top of the sensor. The attached radial cap serves an important thermal
management purpose and the sensor will not operate properly without a cap.

Operation for extended periods of time without the cap will result in system errors and the sen-
sor overheating. The cap can be replaced with alternative solutions but it cannot be left off
altogether.

If you wish to operate the sensor with a custom mounting solution, please contact our Field Ap-
plication Team and we can answer your questions and provide guidance for achieving proper
operations.

This product emits Class 1 invisible laser radiation. The entire window is considered to be the
laser aperture. While Class 1 lasers are considered to be “eye safe”, avoid prolonged direct view-

7

https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.atlassian.net/servicedesk/customer/portal/8

ing of the laser and do not use optical instruments to view the laser.

When operated in an ambient temperature >40�°C, the metallic surfaces of the sensor may be
hot enough to potentially cause skin burn. Avoid skin contact with the sensor’s base, lid and
the heatsink when the sensor is operated under these conditions. The sensor should not be
used in an ambient temperature above 60°C. The maximum safety certified ambient operating
temperature is 60°C.

PRECAUTIONS:

Tous les capteurs Ouster sont des unité hermétiquement scellée, qui ne peut être entretenue ou
modifiée par l’utilisateur.

L’utilisation de commandes, de réglages, ou l’exécution de procédures autres que celles spéci-
fiées dans le présent document peuvent entraîner des rayonnements laser dangereux.

L’utilisation d’un capteur Ouster est soumise aux conditions de vente signées avec Ouster ou le
distributeur/intégrateur, incluant l’interdiction de:

Retirer ou ouvrir de quelque façon le boîtier du capteur

Analyser les composants internes du capteur

Pratiquer la rétro-ingénierie de toute ou partie du capteur

Autoriser une tierce personne à mener les actions listées ci-dessus

L’utilisation du capteur sans le support (fourni avec les capteur) ou sans contact avec une sur-
face ayant des capacités thermiques adéquates peut entraîner une surchauffe du capteur dans
certaines conditions.

Ce capteur présente une conception avec un dissipateur thermique supérieur modulaire, ceci
pour apporter plus de flexibilité de montage et d’intégration au capteur.

Cette conception modulaire augmente la flexibilité de conception mais ne supprime pas le be-
soin de dissipation thermique au-dessus du capteur. Le dissipateur thermique radial fourni est
essentiel à une bonne gestion thermique. Le capteur ne fonctionnera pas correctement sans
cette pièce.

Une utilisation prolongée du capteur sans le dissipateur thermique supérieur peut résulter à des
erreurs système ainsi qu’à une surchauffe du capteur pouvant aller jusqu’à son extinction. Le
dissipateur thermique fourni peut être remplacé par une autre solution de dissipation thermique
adéquate, mais ne doit pas être simplement retiré.

Si vous souhaitez utiliser votre capteur avec une dissipation thermique personnalisée, merci de
contacter notre Équipe Support qui pourra répondre à vos questions et vous apporter le support
et le conseil nécessaire.

Ce produit émet un rayonnement laser invisible de classe 1. L’ouverture de sortie du laser est
constituée par la fenêtre du capteur dans sa totalité. Même si les lasers de classe 1 ne sont pas
considérés comme dangereux pour les yeux, ne regardez pas directement le rayonnement laser
de façon prolongée et n’utilisez pas d’instruments optiques pour observer le rayonnement laser.

Lors d’une utilisation à température ambiante supérieure à 40°C, la surface métallique du cap-

8

https://ouster.atlassian.net/servicedesk/customer/portal/8

teur peut présenter des risques de brûlures pour la peau. Dans ces conditions, il est important
d’éviter tout contact avec la partie supérieure, la base ou le dissipateur thermique du capteur.
Le capteur ne doit pas être utilisé à une température ambiante supérieure à 60˚C. 60˚C est la
température maximale certifiée d’opération sûre du capteur.

Equipment Label: Includesmodel and serial number and a notice that states the unit is a Class 1 Laser
Product, is affixed to the underside of the Sensor Enclosure Base. It is only visible after the attached
mount with which the Sensor is shipped, is removed. For location details please refer to the hardware
user manual.

L’étiquette de l’équipement, comprenant le modèle, le numéro de série, et la classification du produit
laser (ici, classe 1), est apposée au-dessous de la base du boîtier du capteur. Il n’est visible qu’après
avoir retiré le diffuseur de chaleur avec lequel le capteur est expédié. L’emplacement est décrit pré-
cisément dans le manuel d’utilisation du matériel.

Electromagnetic Compatibility: The Ouster sensors are an FCC 47 CfR 15 Subpart B device. This
device complies with part 15 of the FCC Rules. Operation is subject to the following conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

“Ouster” and Ouster sensors are both registered trademarks of Ouster, Inc. They may not be used
without express permission from Ouster, Inc.

If you have any questions about the above points, contact us at legal@ouster.io.

1.2 Proper Assembly, Maintenance and Safe Use

All Ouster sensors can be easily set up by following the instructions outlined in the hardware user
manual. Any mounting orientation is acceptable. Each sensor is shipped with an attached mount that
can be used for test or normal use within the specified operating conditions. The sensor may also be
affixed to any other user specific mount of appropriate thermal capacity. Please contact Ouster for
assistance with approving the use of user specific mounting arrangements.

Any attempt to utilize the sensor outside the environmental parameters delineated in the relevant data
sheet for your Ouster sensor may result in voiding the warranty.

When power is applied, the sensor powers up and commences boot-up with the laser disabled. The
boot-up sequence is approximately 60s in duration, after which the internal sensor optics subassem-
bly commences spinning, the laser is activated, and the unit operates in the default 1024 x 10 Hzmode.
When the sensor is running, and the laser is operating, a faint red flickering light may be seen behind
the optical window.

Note that all Ouster sensors utilizes an 865nm infrared laser that is only dimly discernible to the naked
eye. The sensor is fully Class 1 eye safe, though Ouster strongly recommends against peering into the
optical window at close range while the sensor is operating. Ouster sensors are equipped with amulti-
layer series of internal safety interlocks to ensure compliance to Class 1 Laser Eye Safe limits.

All Ouster sensors are hermetically sealed units, and are not user-serviceable. Any attempt to unseal
the enclosure has the potential to expose the operator to hazardous laser radiation.

The sensor user interface may be used to configure the sensor to a number of combinations of scan

9

mailto:legal@ouster.io

rates and resolutions other than the default values of 1024 x 10 Hz resolution. In all available combi-
nations, the unit has been evaluated by an NRTL to remain within the classification of a Class 1 Laser
Device as per IEC 60825-1:2014 (Ed. 3).

1.2.1 Assemblage correct et utilisation sûre

Tous les capteurs Ouster s’installe facilement en fixant la base sur un support percé de trous concor-
dants, et en suivant les instructions d’interconnexion décrites dans le manuel d’utilisation dumatériel.
Toute orientation de montage est acceptable. Chaque capteur est expédié équipé d’un dissipateur de
chaleur, utilisable en phase de test et en conditions normales. Néanmoins tout autre support présen-
tant une capacité thermique appropriée pour l’application de l’utilisateur peut être utilisé. Veuillez
contacter Ouster dans le cas où un montage spécifique à votre application serait nécessaire.

Toute tentative d’utilisation du capteur en dehors des paramètres environnementaux définis dans la
fiche technique de votre capteur Ouster peut entraîner l’annulation de la garantie.

Lorsque le capteur est sous tension, celui-ci démarre et commence son initialisation avec le laser
désactivé. Le temps de démarrage est d’environ 60s, après quoi le sous-système optique entre en ro-
tation et le laser est activé, le capteur opère alors dans son mode par défaut de 1024 x 10 Hz. Lorsque
le capteur est en marche et que le laser est activé, on peut apercevoir une faible lumière rouge vacil-
lante derrière la vitre teintée. Tous les capteurs Ouster utilisent une longueur d’ondes infra-rouge de
865nm à peine perceptible pour l’œil humain, et le rayonnement laser IR émis est sans danger pour les
yeux. Cependant, bien que les rayonnements laser de classe 1 soient sans danger dans des conditions
raisonnablement prévisibles, Ouster recommande fortement de ne pas regard er fixement la vitre tein-
tée pendant que le capteur est en marche. Tous les capteurs Ouster sont des unités hermétiquement
scellées, qui ne peuvent pas être entretenues, modifiées ou réparées par l’utilisateur. Toute tentative
d’ouverture du boîtier a pour risque d’exposer l’opérateur à un rayon-nement laser dangereux.

Les capteurs Ouster sont équipés d’une série de dispositifs de sécurité à plusieurs niveaux, de façon à
assurer en toutes circonstances le respect des limites d’irradiance correspondant aux rayonnements
lasers de classe 1, sans danger pour les yeux.

L’interface utilisateur du logiciel du capteur peut être utilisée pour configurer le capteur selon un cer-
tain nombre de combinaisons de vitesses de balayage et de résolutions autres que les valeurs utilisées
par défaut, respectivement de 1024 x 10 Hz.

10

2 Firmware Introduction

This Firmware User Manual is meant to allow the users to take advantage of all the features that are
available with Ouster Sensors. Detailed Instructions regarding lidar operations, lidar data, API Guides
and Troubleshooting guide are present in this user manual.

For information on the mechanical and electrical operations or the interface box, please refer to the
Hardware User Manual.

To know more about Ouster sensors and their specifications please refer to the datasheets available
on our Website.

3 Connecting to Sensor

3.1 What’s in the box

11

https://ouster.com/downloads//
https://ouster.com/downloads//

Note: Ibox is not always shipped with the sensor, based on customer requirement it could be a pig
tail connector cable or a custom cable.

3.2 Sensor Setup

Connect one end of the bayonet-style connector to the Ouster sensor as shown. Verify that the
plug “UP” indicator is pointed up.

Rotate the collet on the plug until one of its two pins is aligned with the major keyway. This will
allow its two pins to enter the receptacle channel.

12

Connect the plug to the sensor, then rotate the collet 180 degrees clockwise until it clicks. This
indicates that it is fully seated.

Connect one end of the power supply to the wall socket and the other end to the IO box.

Connect one end of the ethernet cable provided to the IO box and the other end to a PC/LINUX/-
MAC user interface.

3.3 Network Configuration

The sensor is designed to communicate with a host machine through a variety of different methods
such a DHCP, IPv6/IPv4 link-local, and static IP.

On most systems you should be able to connect the sensor into your network or directly to a host
machine and simply use the sensor hostname to communicate with it.

Your Ouster sensor requires a computer with a gigabit Ethernet connection and a 24V supply.

Optionally you may time synchronize the sensor through an external time source or through the com-
puter via PTP.

The sensor hostname is, os-991234567890.local, where 991234567890 is the sensor serial number. The
sensor serial number can be found on a sticker affixed to the top of the sensor.

For more detailed guidance on communicating with the sensor on various operating systems and net-
work settings please reference the Networking Guide in the Appendix.

Commands for setting and deleting a static IP address can be found in the HTTP API Reference Guide
section.

13

Figure 3.1: Network Configuration and Setup

Note: May be required to deactivate the firewall to connect with the sensor and access sensor data.

Open Google Chrome/Microsoft Edge/Firefox. Use the hostname in the format of http://OS-
99xxxxxxxxxx.local and click on “Enter/Character turn” to open Ouster Dashboard.

Note:

The serial number of the sensor need not start with 99 and is only taken as an example in this
document, the sensor serial number can be found on a sticker affixed to the top of the sensor.

Please keep in mind NOT to use https:// as it will result in an error, use without s as shown
http://OS-99xxxxxxxxxx.local.

14

3.4 Web Interface

The sensor homepage can be accessed by typing in the sensor’s address (IPv4, IPv6, or hostname)
in a web browser (http://os-991234567890.local/ where 991234567890 is the serial number). From
here you can see information about the sensor, access documentation, and configure sensor settings.

Note: This new version of the web UI will only be accessible after updating to FW 2.2.0 or later.

Dashboard: Contains an overview of the sensor.

System Information: This panel provides information regarding the network configuration and
hardware details that are unique to each sensor

Firmware Update: You can update firmware on this panel. See Updating Firmware for more
details.

System Status: This panel displays the status of the sensor and information regarding any Ac-
tive Alerts. More information on the status of the sensor can be found by clicking the link, which
will take the user to the Diagnostics tab

Configuration: An overview of the sensor configuration is available on this panel. The sensor
configuration can also be edited by clicking on the link below, which will take the user to the
Configuration tab

Figure 3.2: Ouster Dashboard

Diagnostics: Contains diagnostic alert and error information about the sensor for troubleshooting
purposes. For a list of possible alerts and errors, see Alerts and Errors. Some Alerts require the user
to reach out to ouster support. Please include a copy of the System Diagnostics file which can be
downloaded by clicking the blue tab on this page.

15

http://os-991234567890.local/

Figure 3.3: Ouster Alerts & Diagnostics

Configuration: This tab contains a user interface to change sensor configuration. While in STANDBY
mode, we can update the configuration settings in theWEB UI, but it will not take effect until we switch
the sensor back to NORMAL mode

ResetConfiguration: Resets sensor to factory configurations and settings. Note that this resets
any static IP address given to the sensor.

Persist Active Config: Allows the user to configure the sensor settings and set them as the
active configuration without reinitializing the sensor

Apply Config (reinit): Allows the user to configure the sensor settings. This involves a reinitial-
ization of the sensor, so that the sensor configuration settings can take effect

Documentation: Contains the HTTP and TCP API guides that are compatible with the version of
the firmware on the sensor. Visit Ouster Sensor Documentation for latest hardware and software
user manuals, along with integration guides and troubleshooting guides.

4 Updating Firmware

Sensor firmware can be updated with an Ouster-provided firmware file from Ouster FW (or di-
rectly from the deployment engineering team) by accessing the sensor over http - e.g., http://os-
991900123456.local/ and uploading the file as prompted.

Always check your firmware version before attempting an update. Only update to an equal or higher
version number.

16

https://static.ouster.dev/sensor-docs/index.html
https://www.ouster.com/resources
http://os-991900123456.local
http://os-991900123456.local

Figure 3.4: Sensor Configuration

Figure 3.5: Ouster Documentation

17

Figure 4.1: Uploading a new firmware image onto the sensor

After the web UI confirms that the update is complete, please allow the sensor to reboot (about 2
minutes) and refresh your webpage to get access to the updated Web UI.

4.1 Software Resources

After connecting to your sensor, you can quickly visualize the point cloud using Ouster Python SDK
or using Ouster Studio . Both Ouster Python SDK and Ouster Studio are available for Linux, Mac, and
Windows. Please visit Ouster Resources for the latest tools to visualize your sensor output.

Ouster Python SDK Ouster Python SDK provides a high-level interface for interacting with sensor hardware and
record sensor data suitable for prototyping, evaluation, and other non-safety critical applications. Example
and reference code is provided for several common operations on sensor data. he SDK includes APIs for:

Querying and setting sensor configuration
Recording and reading data in pcap format
Reading and buffering sensor UDP data streams reliably
Frame-based access to lidar data as numpy datatypes
Conversion of raw data to range/signal/near_ir/reflectivity images (de-staggering)
Efficient projection of range measurements to Cartesian (X, Y, Z) coordinates

Ouster Studio Ouster Studio is software provided by Ouster to visualize, record, and analyze data from Ouster
lidar sensors. Ouster Studio is cross-platform, with official support for Windows, MacOS and Ubuntu. The
software performs real-time visualization, processing, and recording of live 3D lidar data captured from
Ouster lidar sensors.

18

https://static.ouster.dev/sdk-docs/index.html
https://ouster.com/products/software/ouster-studio-visualizer/
https://ouster.com/downloads//

Note: Ouster recommends users to utilize Ouster Python SDK.

19

5 Sensor Data

5.1 Coordinate Frames and XYZ Calculation

Ouster defines two coordinate frames:

The Lidar Coordinate Frame follows the Right Hand Rule convention and is a point cloud-centric
frame of reference that is the simplest frame in which to calculate and manipulate point clouds. The
X-axis points backwards towards the external connector, which is an unintuitive orientation that was
deliberately chosen to meet the following criteria:

data frames split at the back of the sensor i.e. the external connector

data frames start with the azimuth angle equal to 0°

All point cloud features including setting an azimuthwindow and phase locking are defined in the Lidar
Coordinate Frame.

The Sensor Coordinate Frame follows the Right Hand Rule convention and is a mechanical housing-
centric frame of reference that follows robotics convention with X-axis pointing forward. Ouster-
provided drivers and visualizers represent data in the Sensor Coordinate Frame.

Note: All Ouster coordinate frames follow the Right Hand Rule, allowing for standard 3D transfor-
mation matrix math to convert between them. For multi-sensor systems that require calibration, this
Linear Algebra-based approach can be convenient. However, customers with single-sensor systems
may find it more intuitive to stay in the Lidar Coordinate Frame and take arithmetic shortcuts.

5.1.1 Lidar Coordinate Frame

The Lidar Coordinate Frame is defined at the intersection of the lidar axis of rotation and the lidar
optical midplane (a plane parallel to Sensor Coordinate Frame XY plane and coincident with the 0°
elevation beam angle of the sensor).

The Lidar Coordinate Frame axes are arranged with:

positive X-axis pointed at encoder angle 0° and the external connector

positive Y-axis pointed towards encoder angle 90°

positive Z-axis pointed towards the top of the sensor

The Lidar Coordinate Frame is marked in both diagrams below with XL, YL, and ZL.

20

5.1.2 Lidar Range to XYZ

Given the following information, range data may be transformed into 3D cartesian XYZ coordinates in
the Lidar Coordinate Frame:

From a measurement block from the UDP packet:

Measurement ID value can be found on the lidar data packet

scan_width value of the horizontal resolution

r or range_mm1 value of the data block of the i-th channel

r' or range_to_beam_origin_mm2

From the get_beam_intrinsics TCP command:

lidar_origin_to_beam_origin_mm3 value

beam_altitude_angles array

beam_azimuth_angles array

The corresponding 3D point can be computed by

r = range_mm

|n⃗| = lidar_origin_to_beam_origin_mm

r = |r⃗′|+ |n⃗|

θencoder = 2π ·
(
1− measurement ID

scan_width

)
θazimuth = −2π

beam_azimuth_angles[i]
360

ϕ = 2π
beam_altitude_angles[i]

360

x = (r − |n⃗|) cos (θencoder + θazimuth) cos(ϕ) + |n⃗| cos (θencoder)
y = (r − |n⃗|) sin (θencoder + θazimuth) cos(ϕ) + |n⃗| sin (θencoder)
z = (r − |n⃗|) sin(ϕ)

1 r or range_mm is the sum of the magnitudes of vectors of r’ and n. This value is provided for each measurement in blocks
[0-15] of the i-th channel.

2 r' or range_to_beam_origin_mm is the magnitude of the distance vector from lidar front optics to the detected object. This
value is NOT provided; It is only to help illustrate the concept.

3 n or lidar_origin_to_beam_origin_mm is the magnitude of the distance vector from the center of the lidar origin coordinate
frame to lidar front optics. This value is provided from the get_beam_intrinsics, please refer to the API Guide for more informa-
tion.

21

Figure 5.1: Top-down view of Lidar Coordinate Frame

Figure 5.2: Side view of Lidar Coordinate Frame

22

5.1.3 Sensor Coordinate Frame

The Sensor Coordinate Frame is defined at the center of the sensor housing on the bottom, with the
X-axis pointed forward, Y-axis pointed to the left and Z-axis pointed towards the top of the sensor. The
external connector is located in the negative x direction. The Sensor Coordinate Frame is marked in
the diagram below with XS, YS, ZS.

Figure 5.3: Top-down view of Sensor Coordinate Frame

Figure 5.4: Side view of Sensor Coordinate Frame

23

5.1.4 Combining Lidar and Sensor Coordinate Frame

The Lidar Coordinate Frame’s positive X-axis (0 encoder value) is opposite the Sensor Coordinate
Frame’s positive X-axis to center lidar data about the Sensor Coordinate Frame’s positive X-axis. A
single measurement frame starts at the Lidar Coordinate Frame’s 0° position and ends at the 360°
position. This is convenient when viewing a “range image” of the Ouster Sensor measurements, al-
lowing the “range image” to be centered in the Sensor Coordinate Frame’s positive X-axis, which is
generally forward facing in most robotic systems.

The Ouster Sensor scans in the clockwise direction when viewed from the top, which is a negative
rotational velocity about the Z-axis. Thus, as encoder ticks increase from 0 to 90,111, the actual angle
about the Z-axis in the Lidar Coordinate Frame will decrease.

5.1.5 Lidar Intrinsic Beam Angles

The intrinsic beam angles for each beam may be queried with a TCP command get_beam_intrinsics
to provide an azimuth and elevation adjustment offset to each beam. The azimuth adjustment is
referenced off of the current encoder angle and the elevation adjustment is referenced from the XY
plane in the Sensor and Lidar Coordinate Frames.

5.1.6 Lidar Range Data To Sensor XYZ Coordinate Frame

For applications that require calibration against a precision mount or use the IMU data in combination
with the lidar data, the XYZ points should be adjusted to the Sensor Coordinate Frame. This requires
a Z translation and a rotation of the X,Y,Z points about the Z-axis. The z translation is the height of the
lidar aperture stop above the sensor origin, which varies depending on the sensor you have, and the
data must be rotated 180° around the Z-axis. This information can be queried over TCP in the form of
a homogeneous transformation matrix in row-major ordering.

Example JSON formatted query using the TCP command get_lidar_intrinsics:

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 36.180, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_lidar_to_sensor =

−1 0 0 0

0 −1 0 0

0 0 1 36.180

0 0 0 1

The table below lists all product lines’ distances of the aperture stop above the sensor origin for use
in the z translation.

Table 5.1: Lidar aperture stop above sensor origin

24

Product Line Lidar aperture stop above sensor origin

OS0 Gen 1 & Gen 2 (All Revisions) 36.180 mm

OS1 Gen 1 & Gen 2 (All Revisions) 36.180 mm

OS2 Gen 2 (Revisions A, B, C) 74.296 mm

OS2 Gen 2 (Revisions D and higher) 78.296 mm

5.1.7 IMU Data To Sensor XYZ Coordinate Frame

The IMU is slightly offset in the Sensor Coordinate Frame for practical reasons. The IMU origin in the
Sensor Coordinate Frame can be queried over TCP in the form of an homogeneous transformation
matrix in row-major ordering.

Example 1- Expected response for TCP command get_imu_intrinsics when using Gen1 OS1 (all revi-
sions), Gen2 OS01 (all revisions) and Gen2 OS2 (top-level revisions A, B, C)

{
"imu_to_sensor_transform": [1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 7.645, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_imu_to_sensor =

1 0 0 6.253

0 1 0 −11.775

0 0 1 7.645

0 0 0 1

Example 2- Expected response for TCP command get_imu_intrinsicswhen using Gen2 OS2 (top-level
revisions D and higher)

{
"imu_to_sensor_transform": [1, 0, 0, 6.253, 0, 1, 0, -11.775, 0, 0, 1, 11.645, 0, 0, 0, 1]

}

Which corresponds to the following matrix

M_imu_to_sensor =

1 0 0 6.253

0 1 0 −11.775

0 0 1 11.645

0 0 0 1

25

6 Lidar Data Packet Format

With firmware version 2.3 and above, users will have the option to switch between different lidar data
packet formats as shown below.

Configurable Data Packet Format

Single Return Profile

Low Data Rate Profile

Dual Return Profile

LEGACY Data Packet Format

By default, the data packet format will be set to LEGACY.

Note: In order to enable dual returns the user needs to have both a Rev 06 sensor or later and an
upgrade to firmware version 2.2 or later.

6.1 Configurable Data Packet Format

When setting the udp_profile_lidar to a value other than LEGACY, a new packet format will be automat-
ically activated. This packet format, called the configurable data packet format, allows the users to
choose between different options for the channel data profile depending on their usage, while main-
taining a uniform packet structure across different profiles. It is described in detail below.

6.1.1 Lidar Data Format

When the config parameter udp_profile_lidar is set to a parameter other than LEGACY, we will be in the
Configurable data packet format. Each data packet consists of Packet Header, Measurement Header,
Channel Data Blocks and Packet Footer. The packet rate is dependent on the lidar mode. Words are
32 bits in length and little endian. By default, lidar UDP data is forwarded to Port 7502. Please refer to
the TCP API portion of this manual for more information on setting this parameter. Alternately, this
mode can also be configured via the Web Interface.

26

Packet layout

Packet Header [256 bits]

Packet type [16 bit unsigned int] - Identifies lidar data vs. other packets in stream. Packet Type
is 0x1 for Lidar packets.

Frame ID [16 bit unsigned int] - Index of the lidar scan, increments every time the sensor com-
pletes a rotation, crossing the zero azimuth angle.

Init ID [24 bit unsigned int] - Initialization ID. Updates on every reinit, which may be triggered
by the user or an error, and every reboot. This value may also be obtained by running the TCP
command get_sensor_info.

Serial No [40 bit unsigned int] - Serial number of the sensor. This value is unique to each sensor
and can be found on a sticker affixed to the top of the sensor. In addition, this information is also
available on the Sensor Web UI and by reading the field prod_sn from get_sensor_info.

Column Header Block [96 bits]

Timestamp [64 bit unsigned int] - Timestamp of the measurement in nanoseconds.

Measurement ID [16 bit unsigned int] - Sequentially incrementing measurement counting up
from 0 to 511, or 0 to 1023, or 0 to 2047 depending on lidar_mode.

Status [1 bit unsigned int] - Indicates validity of the measurements. Status is 0x01 for valid
measurements.Status is 0x00 for dropped or disabled columns.

N Channel Data Blocks [Varies based on channel data profile] - The size and the structure of the
channel data block varies based on the configurable data packet format chosen by the user. More
information on each of these options are described below in the following sections.

Packet Footer [256 bits]

27

Figure 6.1: Configurable Data Packet Configuration

28

6.1.2 Channel Data Profiles

This section describes the different channel data profile options that are available to the users as part
of the configurable data packet format. Each of these data profiles can be selected by setting the
configuration parameter udp_profile_lidar to one of the following options:

RNG19_RFL8_SIG16_NIR16 (Single Return Profile)

RNG15_RFL8_NIR8 (Low Data Rate Profile)

RNG19_RFL8_SIG16_NIR16_DUAL (Dual Return Profile)

More details on how to set the configuration parameters are described in the TCP API Guide portion
of this Firmware User Manual.

Note: Calibrated reflectivity has certain hardware requirements. Please refer to the Calibrated Re-
flectivity section for more details.

Table 6.1: Configurable Data Packet Profiles

Description Single Return Profile Low Data Rate Profile Dual Return Profile

Profiles RNG19_RFL8_SIG16_NIR16 RNG15_RFL8_NIR8 RNG19_RFL8_SIG16_NIR16_DUAL

Words per pixel 3 1 4

Range RET1 19 bits 15 bits 19 bits

Reflectivity RET1 8 bits 8 bits 8 bits

Range RET2 Not Available Not Available 19 bits

Reflectivity RET2 Not Available Not Available 8 bits

Signal RET1 16 bits Not Available 16 bits

Signal RET2 Not Available Not Available 16 bits

NIR 16 bits 8 bits 16 bits

6.1.3 Single Return Profile

This channel data profile can be activated by setting the configuration parameter udp_profile_lidar
to RNG19_RFL8_SIG16_NIR16.

Note: This is only available with firmware version 2.3 or later.

set_config_param udp_profile_lidar RNG19_RFL8_SIG16_NIR16

The above command will set the channel data profile in the configurable data packet format to Single
Return mode. This channel data profile is identical to the channel data block present in LEGACY for-

29

mat, but makes use of the configurable data packet format. Users looking to take advantage of the
configurable data packet format can use this profile in place of LEGACY. The channel data profile for
this is described below.

Channel Data Blocks [96 bits each for RNG19_RFL8_SIG16_NIR16 profile] - For RNG19_RFL8_SIG16_NIR16 pro-
file the channel data block consists of 3 words to accommodate data for porting over the LEGACY profile to
configurable Data Packet format. Only a single return will be made available to the user.

Range [19 bit unsigned int] - Range in millimeters, discretized to the nearest 1 millimeters with a maximum
range of 524m. Note that range value will be set to 0 if out of range or if no detection is made.

Calibrated Reflectivity [8 bit unsigned int] - Sensor Signal Photons measurements are scaled based on
measured range and sensor sensitivity at that range, providing an indication of target reflectivity.

Signal Photons [16 bit unsigned int] - Signal intensity photons in the signal return measurement are re-
ported.

Near Infrared Photons [16 bit unsigned int] - NIR photons related to natural environmental illumination are
reported.

30

Figure 6.2: Single Return Configuration

31

6.1.4 Low Data Rate Profile

This channel data profile can be activated by setting the configuration parameter udp_profile_lidar
to RNG15_RFL8_NIR8.

Note: This is only available with firmware version 2.3 or later.

set_config_param udp_profile_lidar RNG15_RFL8_NIR8

The above command will set the channel data profile in the configurable data packet format to Low
Data Rate configuration.

This channel data profile is especially useful to users who are looking to adopt a channel data profile
to fit with a limited compute capabilities. The data rate and the data packet size that are achieved as
a result of using this profile will be smaller as compared to the other channel data profile options that
are available.

The channel data profile for this is described below.

Channel Data Blocks [32 bits each for RNG15_RFL8_NIR8 profile] - For the RNG15_RFL8_NIR8 profile the chan-
nel data block consists of only 1 word to accommodate data for optimizing information at a low data rate. Only a
single return will be made available to the user.

Range [15 bit unsigned int] - Range scaled down by a factor of 8 mm, for a maximum range of (2^15*8) =
262 mm in 15 bits. Note that the range value will be set to 0 if out of range or if no detection is made.

Calibrated Reflectivity [8 bit unsigned int] - Sensor Signal Photons measurements are scaled based on
measured range and sensor sensitivity at that range, providing an indication of target reflectivity.

Near Infrared Photons [8 bit unsigned int] - NIR photons related to natural environmental illumination are
reported. Measurements are taken similar to LEGACY and other data profiles (Single Data Profile and Dual
Return Profile) but it is scaled down by a factor of 16.

32

Figure 6.3: Low Data Rate Configuration

33

6.1.5 Dual Return Profile

This channel data profile can be activated by setting the configuration parameter udp_profile_lidar
to RNG19_RFL8_SIG16_NIR16_DUAL. Please note in order to enable dual returns the user needs to
have both a Rev 06 sensor or later and an upgrade to firmware version 2.2 or later.

set_config_param udp_profile_lidar RNG19_RFL8_SIG16_NIR16_DUAL

This feature is meant to allow the sensor to provide an output up to 2 returns (Strongest and Second
Strongest).

This feature will allow Ouster sensors to operate in scenarios with semi-transparent obscurants, such
as rain, fog, or even a chain-link fence. In these scenarios, the strongest and second strongest returns
are required to see both the semi-transparent object, as well as whatever may lie behind it.

Channel Data Blocks [128 bits each for RNG19_RFL8_SIG16_NIR16_DUAL profile]- For
RNG19_RFL8_SIG16_NIR16_DUAL profile the channel data block consists of 4 words to accommo-
date data for the multiple returns. A total of up to two returns will be made available to the user.

RangeRET1/2 [19 bit unsigned int] - range inmillimeters, discretized to the nearest 1millimeters with
a maximum range of 524m. Note that range value will be set to 0 if out of range or if no detection is
made.

Calibrated Reflectivity RET1/2 [8 bit unsigned int] - Sensor Signal Photons measurements are
scaled based onmeasured range and sensor sensitivity at that range, providing an indication of target
reflectivity.

Signal Photons RET1/2 [16 bit unsigned int] - Signal intensity photons in the signal return measure-
ment are reported.

Near Infrared Photons [16 bit unsigned int] - NIR photons related to natural environmental illumina-
tion are reported.

34

Figure 6.4: Dual Return Data Packet Configuration

35

6.1.6 Packet Size Calculation (Configurable)

Packet size can be calculated by the following formula:

packet_header_size + columns_per_packet * (measurement_header_size + pixels_per_column * chan-
nel_data_block_size) + packet_footer_size

For example:

32 + 16 * (12 + n * s) + 32 bytes

packet_header_size = 32 bytes

columns_per_packet = 16

measurement_header_size = 12 bytes

n is pixels_per_column (correspond to the number of channels: 128 for OS1-128)

s is the size of a channel data block (16 bytes for RNG19_RFL8_SIG16_NIR16_DUAL con-
figuration)

packet_footer_size = 32 bytes

The table below calculates the data of all products operating at the highest lidar modes, 2048x10
or 1024x20 for Single Return and Low Data Rate profiles and 1024x10 for Dual Return profile and
assuming a default azimuth window of 360°. Providing a custom azimuth window can further lower
data rate. See the Azimuth Window section for details on setting a custom azimuth window.

Table 6.2: Packet Size (Bytes) and Data Rate (Mbps) Breakdown - Configurable Data Packet Format

Product Single Return
Lidar Packet
size (bytes)

Dual Return
Lidar Packet
size (bytes)

Low Data Rate
Lidar Packet
size (bytes)

Single
Return
Data rate
(Mbps)

Dual
Return
Data rate
(Mbps)

Low
Data
Rate
(Mbps)

OS0-32,
OS1-32,
OS2-32

6400 8448 2304 65.57 43.62 23.63

OS0-64,
OS1-64,
OS2-64

12544 16640 4352 128.49 85.24 44.60

OS0-128,
OS1-128,
OS2-128

24832 33024 8448 254.32 169.12 86.55

36

Table 6.3: Packet Rate (Hz) Breakdown - Configurable Data Packet Format

Product Single Return Lidar
Packet rate (Hz)

Dual Return Lidar
Packet rate (Hz)

Low Data Rate Lidar
Packet rate (Hz)

OS0-32, OS1-32,
OS2-32

1280 640 1280

OS0-64, OS1-64,
OS2-64

1280 640 1280

OS0-128, OS1-128,
OS2-128

1280 640 1280

6.2 LEGACY Data Packet Format

On firmware version 2.3 the data packet format by default is set to LEGACY. This option is backward
compatible and is supported on earlier hardware versions as well. The data profile can be modified by
changing the configuration parameter udp_profile_lidar.

6.2.1 Lidar Data Format

Note: Gen 1 OS1-16 and OS1-32 customers should note that upgrading to firmware v2.0.0 or higher
will change their lidar packet formatwhich reduces their data rateswhich is not backwards compatible
with pre-v2.0.0 clients.

By default the configuration parameter udp_profile_lidar is set to LEGACY. In this mode, lidar packets
consist of 16 Measurement Blocks and vary in size relative to the number of channels in the sensor.
The packet rate is dependent on the lidar mode. Words are 32 bits in length and little endian. By
default, lidar UDP data is forwarded to Port 7502. Please refer to the TCP API portion of this manual
for more information on setting this parameter. Alternately, this mode can also be configured via the
Web Interface.

Lidar frames are composed of 512, 1024, or 2048 measurement blocks, depending upon lidar mode
and are completely deterministic in number per frame and their monotonic order and position within
lidar data packets. This determinism allows for efficient lookup table-based decoding in clients.

Each Measurement Block contains:

Header Block [128 bits]

Timestamp [64 bit unsigned int] - timestamp of the measurement in nanoseconds.

Measurement ID [16 bit unsigned int] - a sequentially incrementing measurement counting up from 0 to
511, or 0 to 1023, or 0 to 2047 depending on lidar_mode.

Frame ID [16 bit unsigned int] - index of the lidar scan. Increments every time the sensor completes a

37

rotation, crossing the zero point of the encoder.

Encoder Count [32 bit unsigned int] - an azimuth angle as a raw encoder count, starting from 0 with a max
value of 90,111 - incrementing 44 ticks every azimuth angle in 2048 mode, 88 ticks in 1024 mode, and 176
ticks in 512 mode. Note: the encoder count is redundant with the Measurement ID and will be deprecated
in the future.

N Channel Data Blocks [96 bits each]

Range [32 bit unsigned int - only 20 bits used] - range inmillimeters, discretized to the nearest 1millimeters.

Calibrated Reflectivity [8 bit unsigned int] - sensor Signal Photons measurements are scaled based on
measured range and sensor sensitivity at that range, providing an indication of target reflectivity. Note
that calibrated reflectivity has certain hardware requirements. Please refer to the Calibrated Reflectivity
section for more details.

Signal Photons [16 bit unsigned int] - signal intensity photons in the signal return measurement are re-
ported.

Near Infrared Photons [16 bit unsigned int] - NIR photons related to natural environmental illumination are
reported.

Measurement Block Status [32 bits]- indicates whether the measurement block contains valid or zero-padded
data in its channels’ Data Blocks. Valid = 0xFFFFFFFF, Padded = 0x0. If the Measurement Block Status is Padded
(e.g. in the case of channel data being dropped or if the Measurement Block is outside of the azimuth window),
values within the Channel Data Blocks will be 0, but values within the Header Block remain valid.

38

Figure 6.5: LEGACY Packet Data Configuration

39

6.2.2 Packet Size Calculation (LEGACY)

The table below shows the lidar data packet size breakdown for all products when LEGACY profile is
configured. Since the size of the measurement block varies proportional to the number of channels
in a sensor, all sensors with the same number of channels have the same lidar packet data structure
and size.

Table 6.4: Packet Size Breakdown- LEGACY Profile

Product Number of words in Mea-
surement Block

Size of single Measure-
ment Block (Bytes)

Size of lidar
packet (Bytes)

OS1-16 53 212 3,392

OS0-32, OS1-32,
OS2-32

101 404 6,464

OS0-64, OS1-64,
OS2-64

197 788 12,608

OS0-128, OS1-
128, OS2-128

389 1,556 24,896

The table below calculates the data of all products operating at the highest lidar modes, 2048x10 or
1024x20 for LEGACY profile assuming a default azimuth window of 360°. Providing a custom azimuth
window can further lower data rate. See the Azimuth Window section for details on setting a custom
azimuth window.

Table 6.5: Data Rate- LEGACY Profile

Product LEGACY Lidar packet
size (Bytes)

LEGACY Lidar packets
rate (Hz)

LEGACY Data Rate
(Mbps)

OS1-16 3392 1280 34.77

OS0-32, OS1-32,
OS2-32

6464 1280 66.23

OS0-64, OS1-64,
OS2-64

12608 1280 129.14

OS0-128, OS1-128,
OS2-128

24896 1280 254.97

40

6.3 Calibrated Reflectivity

Starting in firmware v2.1.0, sensors have an 8-bit reflectivity data field. Existing sensors in the field
that update to v2.1.0 will have default calibration values pushed to them. Sensors that have been
factory calibrated for reflectivity will have a higher accuracy of reflectivity.

The command get_calibration_status will return the status of your sensor calibration. The calibration
status is returned with the following format:

{
"reflectivity":
{

"valid": "true: if factory calibrated for better accuracy, false: if not calibrated -- using default�
↪→values and likely has less accuracy",

"timestamp": "Date when the calibration has been performed"
}

}

Please contact your support@ouster.io if you have questions on whether your sensor is hardware-
enabled for calibrated reflectivity.

6.3.1 Reflectivity Data Mapping

Reflectivity values between 0-100 are linearly mapped for lambertian targets with values between 0%
and 100% reflectivity. Values between 101-255 are mapped as log 2 with linear interpolation between
logarithmic points for retroreflective targets. The 255 value corresponds to a retroreflector 864x
stronger than a 100% lambertian target. The charts below show the mapping functions.

41

mailto:support@ouster.io

42

6.4 IMU Data Format

IMU UDP Packets are 48 Bytes long and by default are sent to Port 7503 at 100 Hz. Values are little
endian.

Note: IMU data format is the same regardless of the lidar data profile selected by the user.

Each IMU data block contains:

IMU Diagnostic Time [64 bit unsigned int] - timestamp of monotonic system time since boot in
nanoseconds.

Accelerometer Read Time [64 bit unsigned int] - timestamp for accelerometer time relative to
timestamp_mode in nanoseconds.

Gyroscope Read Time [64 bit unsigned int] - timestamp for gyroscope time relative to times-
tamp_mode in nanoseconds.

Acceleration in X-axis [32 bit float] - acceleration in g.

Acceleration in Y-axis [32 bit float] - acceleration in g.

Acceleration in Z-axis [32 bit float] - acceleration in g.

Angular Velocity about X-axis [32 bit float] - Angular velocity in deg per sec.

Angular Velocity about Y-axis [32 bit float] - Angular velocity in deg per sec.

Angular Velocity about Z-axis [32 bit float] - Angular velocity in deg per sec.

Note that the first timestamp (Words 0,1) is for diagnostics only and is rarely used under normal op-
eration.

The second two timestamps, (Words 2,3) and (Words 4,5), are sampled on the same clock as the lidar
data, so should be used for most applications.

Ouster provides timestamps for both the gyro and accelerometer in order to give access to the lowest
level information. In most applications it is acceptable to use the average of the two timestamps.

Table 6.6: Data Rate - IMU Data Packet

Product IMU packet size (Bytes) IMU packets per second

OS1-16 48 100

OS0-32, OS1-32, OS2-32 48 100

OS0-64, OS1-64, OS2-64 48 100

OS0-128, OS1-128, OS2-128 48 100

43

Figure 6.6: IMU Packet Format

44

7 Sensor Operations

7.1 Typical Sensor Operation

Described below is the typical sensor state machine operation. When the sensor is powered ON, the
sensors start in the initialization phase.

Table 7.1: Sensor Operation

Operating State Description

Warm-up If the sensor detects that its environmental temperature is low it will attempt
to self-heat in a warmup state (Cold Start) before entering a normal operating
state.

Initializing Startup of Ouster Lidar.

Updating Only remains in this state temporarily to update the firmware.

Error If an exception is thrown during initialization or running state, the lidar logs
the error.

OFF Ouster Lidar shut off.

Running Sensor has completed initialization phase and is now running.

Standby User enabled low power operating mode of the sensor.

45

7.2 Sensor Telemetry

Sensor telemetry refers to sensor system state information that changes with time i.e., temperature,
voltage, etc. Users can monitor this data live or for diagnostics and take precautionary measures if
needed. This feature is only available on FW 2.3 and later. This information can be obtained from
running the command get_telemetry as shown in the example below.

{
"input_current_ma": 758,
"input_voltage_mv": 23606,
"internal_temperature_deg_c": 45,
"phase_lock_status": "DISABLED",
"timestamp_ns": 2962666299310

}

Table 7.2: Example Sensor Telemetry

Fields Notes

Timestamp Timestamp from the FPGA measured in ns (Nanoseconds)

Lidar Input Voltage Input voltage mv (Millivolt) that is provided to the sensor

Lidar Input Current Input current ma (Milliamp) that is provided to the sensor

Internal Tempera-
ture

Internal base board temperature ºC (Degree Celsius).

Phase Lock Status Different codes to specify phase lock status and issues related to phase lock-
ing (LOCKED, LOST, DISABLED)

Note: Sensor telemetry will be available on all sensor revisions but internal base board temperature
value can only be measured with Rev 06 and above sensors.

Note: Phase lock output will not indicate loss of lock if the PTP source is lost.

46

7.3 Cold Start

There is software-enabled capability starting with firmware version 2.0.0 for the Ouster sensor to
power-up from lower temperatures. If the sensor detects that its environmental temperature is low, it
will attempt to self-heat in a warmup state before entering a normal operating state.

7.3.1 Hardware Requirements

Gen 1 sensors are not cold start-compatible on any firmware. While all sensors will attempt to start
at lower exhibit cold start behavior by going into the warmup state, only Gen 2 sensors are able to
successfully exit the warmup state into the normal operating state.

7.3.2 Cold Start Operation

There is nothing for the user to change about the sensor configuration to use this feature. The sensor
will automatically begin its warmup process in the coldest parts of its operating temperature range.

Table 7.3: Cold Start

Product Line Min Temp Specs

OS0
-40°C min operating temp

8 mins to SENSOR_RUNNING

12 mins to lasers at temp (full range)

28W peak power

OS1
-40°C min operating temp

8 mins to SENSOR_RUNNING

12 mins to lasers at temp (full range)

28W peak power

OS2
-20°C min operating temp

15 mins to SENSOR_RUNNING

15 mins to lasers at temp (full range)

30W peak power

47

7.3.3 Indications and Alerts

In a cold start scenario, the sensor will have a short warmup phase; we’ve added in the additional
"WARMUP" status to indicate when the sensor is warming up.

$ nc os-992000123456 7501
get_sensor_info

{
"base_pn": "000-101323-03",
"base_sn": "101933001839",
"build_date": "2020-05-15T18:21:21Z",
"build_rev": "v2.0.0",
"image_rev": "ousteros-image-prod-aries-v2.0.0-20201120210617-staging",
"prod_line": "OS-1-128",
"prod_pn": "840-101855-02",
"prod_sn": "99200123456",
"proto_rev": "v1.1.1",
"status": "WARMUP"
}

The following alerts are related to cold start

Table 7.4: Cold Start Alerts

ID Category Level Description

0x01000053 WARMUP_ISSUE ERROR Sensor warmup process has failed.

0x0100004F WARMUP_ISSUE WARN-
ING

Sensor warmup process is taking longer
than expected; please ensure sensor is
thermally constrained per requirements.

7.4 Azimuth Window

Configuring the azimuth window is a feature to only turn on the UDP lidar data within a region of
interest. The region of interest is defined by a min bound and a max bound, both in millidegrees. As
a reminder, angles in this frame increment counterclockwise when viewed from the top. Below is the
Lidar Coordinate Frame from a top-down perspective:

0° towards the external connector

90° a quarter turn counterclockwise from the connector

180° opposite the connector

270° three quarter turns counterclockwise from the connector

48

Configuring the azimuth window lowers the average output data rate of the sensor but does not affect
the peak output data rate of the sensor. It also does not stop the lasers from firing and thus does not
have an effect on power consumption or thermals.

7.4.1 Expected Sensor Behavior

The sensor will round the input azimuth window bounds to the nearest Measurement Block IDs gen-
erating new ID-based bounds. The new bounds are used to mask Measurement Blocks in the lidar
data packets. Lidar packets containing only masked Measurement Blocks are not output, and there
may be partially maskedMeasurement Blocks in the two bookended lidar packets in each frame. The
Measurement Block Status field will indicate the valid or masked/paddedMeasurement Blocks in any
partially masked lidar packets. (See the Lidar Data Packet Format section for details on the lidar data
format.)

The visualized output will contain jagged edges caused by the staggered, nonzero nature of the beam
azimuth angles. It is necessary to set more conservative (wider) bounds to push the jagged edges
beyond the desired window. This can be determined through trial and error or calculated determinis-
tically with knowledge of the queryable beam azimuth angles.

49

7.4.2 Azimuth Window Examples

The TCP API Guide lists the command for setting an azimuth window. Below are example settings.

The command syntax is as follows:

set_config_param azimuth_window [min_bound_millidegrees, max_bound_millidegrees]

Default settings of 360° window:

set_config_param azimuth_window [0, 360000]

Set a region of interest between 0° to 180°:

set_config_param azimuth_window [0, 180000]

Set a region of interest between 270° to 90° with 180° field of view:

set_config_param azimuth_window [270000, 90000]

Set a region of interest 90° to 270° with 180° field of view:

set_config_param azimuth_window [90000, 270000]

Set a region of interest between 0° to 90° with 90° field of view:

set_config_param azimuth_window [0, 90000]

Set a region of interest 90° to 360° with 270° field of view:

set_config_param azimuth_window [90000, 0]

7.5 Standby Operating Mode

Starting with firmware v2.0.0, the sensor can be commanded in and out of a low-power Standby Op-
erating Mode that can be useful for power, battery, or thermal-conscious applications of the sensor.

The TCP config param operating_mode has a default value of NORMAL. Setting it to STANDBY puts the sensor
into Standby Operating Mode upon reinitialization.

50

7.5.1 Expected Sensor Behavior

Power draw in Standby mode 5W. The motor does not spin, and light is not visible from the window.
However, the sensor is on and listening to commands. The sensor status will be STANDBY.

7.5.2 Standby Operating Mode Examples

Below are example netcat console command input and responses for several use cases of the Standby
mode.

Note: In the examples below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

Set sensor into Standby mode and keep sensor in Standby mode upon power-up at next use:

$ nc os-991900123456 7501
set_config_param operating_mode STANDBY
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Set sensor into Standby mode but have sensor start in the default Running mode upon power-up at
next use:

$ nc os-991900123456 7501
set_config_param operating_mode STANDBY
-set_config_param
reinitialize
-reinitialize

Command sensor back into Running mode and save config:

$ nc os-991900123456 7501
set_config_param operating_mode NORMAL
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Note: auto_start_flag is soon to be deprecated parameter namewhere auto_start_flag 0 is equivalent
to operating_mode STANDBY and auto_start_flag 1 is equivalent to operating_mode NORMAL. Please use
operating_mode wherever possible in client code.

51

Warning: Use of auto_start_flag in firmware prior to v2.0.0 has unexpected behavior.

7.6 Signal Multiplier

For Gen 2 sensors with firmware v2.1 or higher, the signal_multiplier config parameter allows the user
to set a multiplier for the signal strength of the sensor, which corresponds to a maximum allowable
azimuth window. Lasers are disabled outside of the maximum allowable azimuth window. By default
the sensor has a signal multiplier value of 1.

7.6.1 Use

The config parameter signal_multiplier <1/2/3> sets the signal multiplier value. For 2x and 3xmultipli-
ers, the azimuth_window [int, int] parameter sets the azimuth window that the lasers will be enabled
in. The higher the signal multiplier value, the smaller the maximum azimuth window can be.

Table 7.5: Relation

Signal Multiplier Value Max Azimuth Window

1 (Default) 360°

2 180°

3 120°

All sensors have equivalent power draw and thermal output when operating at the max azimuth win-
dow for a particular signal multiplier value. Therefore, using an azimuth window that is smaller than
the maximum allowable azimuth window with a particular signal multiplier value (excluding 1x) can
reduce the power draw and thermal output of the sensor. However, while this can increase the max
operating temp of the sensor, it can also degrade the performance at low temps. This discrepancy will
be resolved in a future firmware. The table below outlines some example use cases.

Table 7.6: Example Use Cases

Use Case signal_multiplier Parame-
ter

azimuth_window Parame-
ter

Signal boost 3 [0,120000]

Signal boost with power draw reduc-
tion

2 [0,90000]

52

7.6.2 Expected Behavior

If the sensor has signal multiplier of 1, lasers will be enabled for all 360° of the window, regardless of
the azimuth_window set.

If an invalid pair of signal multiplier and azimuth window values are set, the sensor will throw an error.
If a valid pair of values are set, upon reinitializing, the sensor will operate in the signal multiplier mode.

7.6.3 Examples

The following shows the netcat console input commands and responses for some configuration ex-
amples.

Note: In the examples below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

Set sensor in 3x signal mode with 120° HFoV:

$ nc sensor1_hostname 7501
set_config_param set_config_param signal_multiplier 3
-set_config_param
set_config_param azimuth_window [120000, 240000]
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Sensor will throw an error if invalid parameters are set:

$ nc sensor1_hostname 7501
set_config_param signal_multiplier 5
-error: signal_multiplier must be between 1 and 3, inclusive
set_config_param signal_multiplier 3
-set_config_param
set_config_param azimuth_window [120000, 300000]
-set_config_param
reinitialize
-error: for signal_multiplier value of 3, azimuth_window must span a maximum of 120000 millidegrees.�
↪→Current azimuth_window [120000, 300000] spans 180000 millidegrees.

53

7.7 Sensor Performance by Operating Configuration

Depending upon the sensor’s lidar mode and signal multiplier setting, the sensor performance will
vary from its baseline as listed on the datasheet. This section will present the estimated performance
multiplier depending on the sensor and the operating configuration.

7.7.1 Estimated range multiplier

When using a signal multiplier higher than 1x and depending on the lidar mode, the sensor will get a
range increase. The following tables present an estimated rangemultiplier depending on the operating
configuration.

OS0 and OS1

For the OS0 and OS1 sensors the baseline is the 1024x10 mode

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 1.19 1.41 1.57 1.00 1.19 1.32 0.84 1.00 1.11

20 Hz 1.00 1.19 1.32 0.84 1.00 1.11 NA

OS2

For OS2 sensors the baseline is the 2048x10 mode.

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 1.41 1.68 1.86 1.19 1.41 1.57 1.00 1.19 1.32

20 Hz 1.19 1.41 1.57 1.00 1.19 1.32 NA

Note: The values in the tables above are given for guidance only. The only specs guaranteed are the
ones defined in the sensor datasheet for a specific mode.

54

Maximal representable range

Depending upon the signal multiplier, the maximal representable range of the sensor will be different.
The table below shows the maximal representable range values for each sensor type and multiplier
value.

Table 7.7: Maximum Range

Signal Multiplier Value OS0 OS1 OS2

1x 270 m 270 m 465 m

2x 135 m 135 m 232 m

3x 90 m 90 m 155 m

Range returns beyond the maximal representable range will experience range aliasing. Therefore,
these modes are only recommended in scenarios where there will not be any returns beyond the max-
imal representable range.

7.7.2 Estimated precision multiplier

When using a signal multiplier higher than 1x and depending on the lidar mode, the sensor will get a
precision improvement. The following tables present an estimated precision multiplier depending on
the operating configuration. Please refer to the Signal Multiplier section for more details.

OS0 and OS1

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 0.71 0.50 0.41 1.00 0.71 0.58 1.41 1.00 0.82

20 Hz 1.00 0.71 0.58 1.41 1.00 0.82 NA

OS2

Frame Rate / Horiz. Res. 512 1024 2048

Signal multiplier 1x 2x 3x 1x 2x 3x 1x 2x 3x

10 Hz 0.50 0.35 0.29 0.71 0.50 0.41 1.00 0.71 0.58

20 Hz 0.71 0.50 0.41 1.00 0.71 0.58 NA

55

8 Multi-Sensor Synchronization

8.1 Phase Lock

Phase locking allows a sensor to consistently pass through a specific angle at the top, tenth (10 Hz
mode), or fifth (20 Hz mode) of a second on each rotation. The phase lock control loop runs at 1000
Hz. Phase locking is useful for synchronizing a sensor with other devices including camera, radar, and
other lidar.

A sensor must first be time-synchronized from an external source and must be in either the
TIME_FROM_PTP_1588 or TIME_FROM_SYNC_PULSE_IN timestamp_mode before entering phase lock.

8.1.1 Phase Locking Reference Frame

Phase locking commands use angles defined in the Lidar Coordinate Frame in millidegrees. As a re-
minder, angles in this frame increment counterclockwise when viewed from the top. Below is the Lidar
Coordinate Frame from a top-down perspective:

0° towards the external connector

90° a quarter turn counterclockwise from the connector

180° opposite the connector

270° three quarter turns counterclockwise from the connector

56

8.1.2 Phase Locking Commands

The TCP API Guide lists the two commands needed to achieve phase lock.

Command to enable or disable phase lock:

By default, phase_lock_enable is false

set_config_param phase_lock_enable <true/false>

Command to set the phase lock offset angle in the Lidar Coordinate Frame:

By default, phase_lock_offset value is 0

Note: <angle_in_millidegrees> is an integer from 0 to 360000

set_config_param phase_lock_offset <angle_in_millidegrees>

57

8.1.3 Multi-sensor Example

In this example below, we are trying to phase lock all three sensors on the car so that they point towards
the front of the car at the same time. Note that their external connectors point in different directions.

Assuming the three sensors are properly time synchronized via an external source, the following shows
the netcat console input commands and responses from configuring the sensors so that they point
forward at the same time.

Note: In the examples below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

Set Sensor 1 to phase lock at 180°:

$ nc sensor1_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 180000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Set Sensor 2 to phase lock at 90°:

$ nc sensor2_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 90000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Set Sensor 2 to phase lock at 270°:

58

$ nc sensor3_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 270000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

8.1.4 Accuracy

The following chart shows the expected angular position accuracy under normal operating conditions.

Product Line Accuracy

10 Hz 20 Hz

OS0 and OS1 (Gen 1 and Gen 2) 0.5˚ 0.5˚

OS2 5˚ 10˚

8.1.5 Phase Locking Alerts

The following alerts related to phase locking errors are listed below. For the full list of alerts and errors
see the Alerts and Errors section in the Appendix.

Table 8.1: Phase Lock Alerts

id category level description

0x01000050 MOTOR_CONTROL WARN-
ING

The phase lock offset error has exceeded the
threshold.

0x01000051 MOTOR_CONTROL ERROR The phase lock control failed to achieve a
lock multiple times; please contact Ouster at
https://ouster.com/tech-support.

0x01000024 STARTUP ERROR The phase lock control failed to achieve a lock
during startup.

Note: For information onhow tomitigate crosstalk betweendifferentOuster lidars in the samesystem
refer to Inter-sensor Interference Mitigation section of this manual.

59

https://ouster.com/tech-support

8.2 Inter-sensor Interference Mitigation

Inter-sensor crosstalk occurs when two sensors are operating close together and they interpret each
other’s laser pulses as their own. Mitigating crosstalk between two sensors is a two step process:

1) Phase lock the two sensors

2) Set azimuth window on each sensor so that they don’t send data when they are pointing at each
other

8.2.1 Two Sensor Example

In this example below, we are trying to mitigate inter-sensor crosstalk between Sensor 1 and Sensor
2 on the car. Both of their connectors are facing towards the back of the car. The Lidar Coordinate
Frame is printed on the back of the vehicle for reference.

Sensor 3

270°

Sensor 2

90°

Sensor 1

180°

90°

0° 180°
270°

270°

Sensor 1

90° Sensor 2

0° 180°
270° 90°

Sensor 1

l

dSensor 2

X Z

Y

First and foremost, placing a physical barrier between the two sensors is the best option to mitigate
cross talk in this example and most scenarios. If this is not possible, we can use the phase locking
feature to eliminate the problem. Crosstalk only occurs when one sensor shines its lasers into the
window of another sensor. The goal of phase locking is to force the sensors to point at each other
simultaneously so that crosstalk occurs when sensors aren’t generating important data about the
environment.

1a) Time synchronize the two sensors via an external source. See the Time Synchronization section
for more details on time synchronizing sensors with an external GPS or via PTP.

1b) Phase lock both sensors such that they point directly at each other at the same time. In this case,
wewant Sensor 1 to be pointing at 90° at the same time that Sensor 2 is pointing at 270°. The example
netcat console output would look like below.

Note: In the examples below, to distinguish between the command and expected response, a dash has been
added before the expected response. The actual response will be without the dash.

Set Sensor 1 to phase lock at 90°:

60

$ nc sensor1_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 90000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Set Sensor 2 to phase lock at 270°:

$ nc sensor2_hostname 7501
set_config_param phase_lock_enable true
-set_config_param
set_config_param phase_lock_offset 270000
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

2) Set an azimuth window for both sensors. In this case, the region of interest for Sensor 1 is θ1 and
the region of interest for Sensor 2 is θ2

The calculation for θ1 and θ2 is as follows:

θ1 = θ2 = 360◦ − 2 · arctan d

l

In this case, if the two sensors were placed a distance of 100 mm apart, 360◦−2 ·arctan 81
1000

= 360◦−78◦ =
282◦ We want to set azimuth window of size 282° for the two sensors, so that they do not send data in the
78° where they would point at each other. Sensor 1’s azimuth window is the 282° centered around 270°.
Sensor 2’s region of interest is the 282° centered around 90°.

Sensor 1’s azimuth window starts at 129° and follows the CCW direction to end at 51°:

$ nc sensor1_hostname 7501
set_config_param azimuth_window [129000, 51000]
-set_config_param
reinitialize
-reinitialize
save_config_params
-save_config_params

Sensor 2’s azimuth window starts at 309° and follows the CCW direction to end at 231°:

$ nc sensor2_hostname 7501
set_config_param azimuth_window [309000, 231000]
-set_config_param
reinitialize

(continues on next page)

61

(continued from previous page)

-reinitialize
save_config_params
-save_config_params

Product Line Diameter

At window At base including fins

OS0 and OS1 (Gen1 and Gen2) 81 mm 88 mm

OS2 111 mm 121 mm

9 Time Synchronization

9.1 Timing Overview Diagram

Signal path with MULTIPURPOSE_IO set as input

Signal path with MULTIPURPOSE_IO set as output

62

9.2 Sensor Time Source

All lidar and IMU data are timestamped to a common timer with 10 nanosecond precision.

The common timer can be programmed to run off one of three clock sources:

An internal clock derived from a high accuracy, low drift oscillator.

An opto-isolated digital input from the external connector for timing off an external hard-
ware trigger such as a GPS. The polarity of this input signal is programmable. For instance,
both aGPSPPS pulse and a 30Hz frame sync froman industrial camera can supply a timing
signal to the sensor

Using the IEEE 1588 Precision Time Protocol. PTP provides the convenience of configuring
timing over a network that supports IEEE 1588 with no additional hardware signals.

9.2.1 Setting Ouster Sensor Time Source

The source for measurement timestamps can be configured using the timestamp_mode TCP command.
The available modesare described below:

63

Table9.1: Timestamp Modes

Command Response

TIME_FROM_INTERNAL_OSC Use the internal clock. Measurements are time stamped with ns
since power-on. Free running counter based on the sensor’s inter-
nal oscillator. Counts seconds and nanoseconds since sensor turn
on, reported at ns resolution (both a second and nanosecond reg-
ister in every UDP packet), but min increment is on the order of 10
ns.

TIME_FROM_SYNC_PULSE_IN A free running counter synced to the SYNC_PULSE_IN input
counts seconds (# of pulses) and nanoseconds since sensor turn
on. If multipurpose_io_mode is set to INPUT_NMEA_UART then the sec-
onds register jumps to time extracted from a NMEA $GPRMCmes-
sage read on the multipurpose_io port. Reported at ns resolution
(both a second and nanosecond register in every UDP packet), but
min increment is on the order of 10 ns.

TIME_FROM_PTP_1588 Synchronize with an external PTP master. A monotonically in-
creasing counter that will begin counting seconds and nanosec-
onds since startup. As soon as a 1588 sync event happens, the
time will be updated to seconds and nanoseconds since 1970. The
counter must always count forward in time. If another 1588 sync
event happens the counter will either jump forward to match the
new time, or slow itself down. It is reported at ns resolution (there
is both a second and nanosecond register in every UDP packet),
but the minimum increment varies.

If configuring the sensor to synchronize time from an external sync pulse, the pulse polarity can be
specified as described in the TCP API Guide. Pulse-in frequency is assumed to be 1 Hz. For example,
the below commands will set the sensor to expect an active low pulse and configure the seconds
timestamp to be pulse count since sensor startup:

set_config_param timestamp_mode TIME_FROM_SYNC_PULSE_IN

set_config_param sync_pulse_in_polarity ACTIVE_LOW

reinitialize

To configure the multipurpose-io port of the sensor to accept an external NMEA UART message, the
multipurpose_io_mode parameter must be set to INPUT_NMEA_UART as described in External Trigger Clock
Source. Once a valid UARTmessage is received by the sensor, the seconds timestamp will snap to the
latest timestamp received. The expected NMEA UART message is configurable as described in TCP
API Guide. For example, the below commands will set the sensor to accept an NMEA UART message
that is active high with a baud rate of 115200 bits per second, add 27 additional leap seconds, and
accept messages even with a valid character not set:

set_config_param multipurpose_io_mode INPUT_NMEA_UART

set_config_param nmea_in_polarity ACTIVE_HIGH

set_config_param nmea_baud_rate BAUD_115200

set_config_param nmea_leap_seconds 27

64

set_config_param nmea_ignore_valid_char 1

reinitialize

9.2.2 External Trigger Clock Source

Additionally, the sensor can be configured to output a SYNC_PULSE_OUT signal from a variety of
sources. See example commands in the TCP API Guide section. Pulses will always be evenly spaced.

This can be enabled through the multipurpose_io_mode configuration parameter.

Configuration Response

OFF Do not output a SYNC_PULSE_OUT signal.

INPUT_NMEA_UART Reconfigures the MULTIPURPOSE_IO port as an input.
See Setting Ouster Sensor Time Source for more infor-
mation.

OUTPUT_FROM_INTERNAL_OSC Output a SYNC_PULSE_OUT signal synchronized with
the internal clock.

OUTPUT_FROM_SYNC_PULSE_IN Output a SYNC_PULSE_OUT signal synchronized with
a SYNC_PULSE_IN provided to the unit.

OUTPUT_FROM_PTP_1588 Output a SYNC_PULSE_OUT signal synchronized with
an external PTP IEEE 1588 master.

OUTPUT_FROM_ENCODER_ANGLE Output a SYNC_PULSE_OUT signal with a user defined
rate in an integer number of degrees.

When the sensor’s multipurpose_io_mode is set to OUTPUT_FROM_INTERNAL_OSC, OUTPUT_FROM_SYNC_PULSE_IN,
or OUTPUT_FROM_PTP_1588, then sync_pulse_out_frequency (Hz) parameter can be used to define the out-
put rate. It defaults to 1 Hz. It should be greater than 0 Hz and maximum sync_pulse_out_frequency is
limited by the criterion below.

When the sensor is set to OUTPUT_FROM_ENCODER_ANGLE, then the sync_pulse_out_angle (deg) parameter
can be used to define the output pulse rate. This allows the user to output a SYNC_PULSE_OUT sig-
nal when the encoder passes a specified angle, or multiple of the angle, indexed from 0 crossing,
in degrees. It should be an integer between 0 and 360 degrees, inclusive. However, the minimum
sync_pulse_out_angle is also limited by the criterion below.

In all modes, the output pulse width is defined by sync_pulse_out_pulse_width (ms).

Note: If sync_pulse_out_pulse_width x sync_pulse_out_frequency is close to 1 second, the output pulses
will not function (will not return to 0). For example, at 10 Hz rotation and a 10 ms pulse width, the
limitation on the number of pulses per rotation is 9.

65

Example Commands

Here are example commands and their effect on output pulsewhen lidar_mode is 1024x10, and assuming
sync_pulse_out_pulse_width is 10 ms.

Command Response

set_config_param multipurpose_io_mode
OUTPUT_FROM_SYNC_PULSE_IN
set_config_param sync_pulse_out_pulse_width 10
set_config_param sync_pulse_out_frequency 1
reinitialize

The output pulse frequency is 1 Hz. Each pulse
is 10 ms wide. sync_pulse_out_pulse_width and
sync_pulse_out_frequency commands are optional be-
cause they just re-command the default values

set_config_param multipurpose_io_mode
OUTPUT_FROM_SYNC_PULSE_IN
set_config_param sync_pulse_out_frequency 50
reinitialize

The output pulse frequency is 50 Hz. Each pulse is 10
ms wide.

set_config_param multipurpose_io_mode
OUTPUT_FROM_ENCODER_ANGLE
set_config_param sync_pulse_out_angle 360
reinitialize

The output pulse frequency is 10 Hz, since the sensor
is in 10 Hz mode (10 rotations / sec) and the angle is
set to 360º, a full rotation. Each pulse is 10 ms wide.

set_config_param multipurpose_io_mode
OUTPUT_FROM_ENCODER_ANGLE
set_config_param sync_pulse_out_angle 45
reinitialize

The output pulse frequency is 80 Hz, since the sensor
is in 10 Hz mode (10 rotations / sec) and the angle is
set to 45º. Each full rotation will have 8 pulses. Each
pulse is 10 ms wide.

9.3 NMEA Message Format

The Ouster Sensor expects a standard NMEA $GPRMC UART message. Data (called a sentence) is a
simple ASCII string starting with a ‘$’ character and ending with a return character. Fields of the sen-
tence are separated with a ‘,’ character, and the last field (a checksum) is separated by a ‘*’ character.

The max character length of a standard message is 80 characters; however, the Ouster Sensor can
support non-standard messages up to 85 characters (see Example 2 below).

The Ouster Sensor will deliver time in the UDP packet by calculating seconds since 00:00:00 Thursday,

66

1 January 1970. nmea_leap_seconds by default is 0, meaning this calculation will not take into account
any leap seconds. If nmea_leap_seconds is 0 then the reported time is Unix Epoch time. As of February,
2019 Coordinated Universal Time (UTC) lags behind International Atomic Time (TAI) by an offset of 37
seconds (10 seconds from the initial UTC offset when UTC was introduced in 1972 + 27 leap seconds
announced in the intervening years). Therefore, setting nmea_leap_seconds to 37 in February of 2019
would make the timestamps match the TAI standard.

nmea_in_polarity by default is ACTIVE_HIGH. This means that a UART start bit will occur directly after a
falling edge. If using RS-232, the UART signal may be inverted (where a start bit occurs directly after
a rising edge). In this case, nmea_in_polarity should be set to ACTIVE_LOW.

9.3.1 Example 1 Message:

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

Field Description

$GPRMC Recommended Minimum sentence C

123519 Fix taken at 12:35:19 UTC

A Status A=active or V=Void

4807.038 Latitude 48 deg 07.038’

N Latitude cardinal reference

01131.000 Longitude 11 deg 31.000’

E Longitude cardinal reference

022.4 Speed over the ground in knots

084.4 Track angle in degrees True

230394 Date - 23rd of March 1994

003.1 Magnetic Variation

W Magnetic cardinal reference

A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator

*6A The checksum data, always begins with *

67

9.3.2 Example 2 Message:

$GPRMC,042901.00,A,3745.871698,N,12224.825960,W,0.874,327.72,130219,13.39,E,A,*60

Field Description

$GPRMC Recommended Minimum sentence C

042901.00 Fix taken at 4:29:01 UTC

A Status A=active or V=Void

3745.871698 Latitude 37 deg 45.871698’

N Latitude cardinal reference

12224.825960 Longitude 12 deg 24.825960’

W Longitude cardinal reference

0.874 Speed over the ground in knots

327.72 Track angle in degrees True

130219 Date - 13th of February 2019

13.39 Magnetic Variation

E Magnetic cardinal reference

A [Optional] A=autonomous, D=differential, E=Estimated, N=not valid, S=Simulator

*60 The checksum data, always begins with *

68

10 GPS/GNSS Synchronization Guide

For more information on how to physically connect a GPS to your Ouster sensor and synchronise the
Ouster sensor timestamp to an NMEA sentence, please refer to your sensor’s Hardware User Manual.

10.1 Configuring the Ouster Sensor

Now that everything is configured and verified on the GPS side and you have connected everything
to the Ouster sensor, it is time to configure the Ouster sensor to synchronize its timestamp with the
GPS.

Set the timestamp_mode to TIME_FROM_SYNC_PULSE_IN

TCP command: set_config_param timestamp_mode TIME_FROM_SYNC_PULSE_IN

Set the multipurpose_io_mode to INPUT_NMEA_UART

TCP command: set_config_param multipurpose_io_mode INPUT_NMEA_UART

Set the polarity of the sync_pulse_in pin to match the GPS PPS polarity

TCP command: set_config_param sync_pulse_in_polarity <ACTIVE_HIGH or ACTIVE_LOW>

Set the polarity of the multipurpose_io pin to match the GPS NMEA UART polarity

TCP command: set_config_param nmea_in_polarity <ACTIVE_HIGH or ACTIVE_LOW>

Set the nmea_baud_rate to match the GPS NMEA baud rate

TCP command: set_config_param nmea_baud_rate <BAUD_11520 or BAUD_9600>

Set the nmea_leap_seconds to match the current leap seconds as defined by TIA at this website, at
time of writing this the leap seconds are 37

TCP command: set_config_param nmea_leap_seconds 37

Reinitialize and write the configuration

TCP command: reinitialize

TCP command: save_config_params

10.1.1 Checking for Sync

Once you have completed all the above you should be able to check for synchronization

Check the output from the TCP command: get_time_info

Verify that the sensor is locked onto the PPS signal.

”sync_pulse_in”: { “locked”: 1 }

if not check the polarity and change it if necessary.

Verify that the sensor is locked on the NMEA signal.

69

http://www.leapsecond.com/java/gpsclock.htm

“nmea”: { “locked”: 1 }

if not check the polarity and baud rate and change them if necessary.

Verify that last_read_message looks like a valid GPRMC sentence.

“decoding”: {“last_read_message”: “GPRMC,024041.00,A,5107.0017737,N,11402.3291611,
W,0.080,323.3,020420,0.0,E,A*20”}

Verify that timestamp time has updated to a reasonable GPS time.

“timestamp”: {“time”: 1585881641.96139565999999, “mode”:
“TIME_FROM_SYNC_PUSLE_IN”, “time_options”: { “sync_pulse_in”: 1585881641}}

Example output from get_time_info:

{
"timestamp":{

"time":1585881641.96139565999999,
"mode":"TIME_FROM_SYNC_PUSLE_IN",
"time_options":{

"sync_pulse_in":1585881641,
"internal_osc":302,
"ptp_1588":309

}
},
"sync_pulse_in":{

"locked":1,
"diagnostics":{

"last_period_nsec":10,
"count_unfiltered":832,
"count":832

},
"polarity":"ACTIVE_HIGH"

},
"multipurpose_io":{

"mode":"INPUT_NMEA_UART",
"sync_pulse_out":{

"pulse_width_ms":10,
"angle_deg":360,
"frequency_hz":1,
"polarity":"ACTIVE_HIGH"

},
"nmea":{

"locked":1,
"baud_rate":"BAUD_9600",
"diagnostics":{

"io_checks":{
"bit_count":2938457,
"bit_count_unfilterd":2938457,
"start_char_count":832,
"char_count":66526

},
"decoding":{

"last_read_message":"GPRMC,024041.00,A,5107.0017737,N,11402.3291611,W,0.080,323.3,020420,0.0,
↪→E,A*20",

"date_decoded_count":832,
(continues on next page)

70

(continued from previous page)

"not_valid_count":0,
"utc_decoded_count":832

}
},
"leap_seconds":37,
"ignore_valid_char":0,
"polarity":"ACTIVE_HIGH"

}
}

}

71

11 TCP API Guide

11.1 Querying Sensor Info and Intrinsic Calibration

The sensor can be queried and configured using a simple plaintext protocol over TCP on port 7501.

An example session using the unix netcat utility is shown below. Note: “xxx” refers to the sensor serial
number. The hostname of the sensor can look like “os-xxx” or “os1-xxx”.

$ nc os-991900123456.local 7501
get_sensor_info

{"prod_line": "OS-1-128", "prod_pn": "840-103575-06", "prod_sn": "992139000666",
"image_rev": "ousteros-image-prod-aries-v2.3.0-rc.1+20220319004702.staging", "build_rev": "v2.3.0-rc.1",
"build_date": "2022-03-18T20:00:29Z", "status": "RUNNING", "initialization_id": 9599936, "base_pn": "",
"base_sn": "", "proto_rev": ""}

A sensor may have one of the following statuses:

Table 11.1: Sensor Status

Status Description

INITIALIZING When the sensor is booting and not yet outputting data

WARMUP Sensor has gone into thermal warmup state

UPDATING When the sensor is updating the FPGA firmware on the first reboot after a firmware
upgrade

RUNNING When the sensor has reached the final running state where it can output data

STANDBY The sensor has been configured into a low-power state where sensor is on but not
spinning

ERROR Check error codes in the errors field for more information

UNCONFIGURED An error with factory calibration that requires a manual power cycle or reboot

Note: If the sensor is set to STANDBY mode some of these commands will not return the expected
values.

If the sensor is in an ERROR or UNCONFIGURED state, please contact Ouster support with the diagnostic file
found at http://os-9919xxxxxxxx/diag for support.

The following commands will return sensor configuration and calibration information:

Note: If the sensor is set to STANDBY mode some of these commands will not return the expected

72

mailto:support@ouster.io?subject=Help%20with%20OS1&body=Hello,%0D%0A%0D%0AI'm%20having%20trouble%20with%20my%20OS1.%20I%20have%20attached%20the%20two%20diagnostic%20files%20and%20relevant%20photos%20of%20my%20setup%20here.
http://os-9919xxxxxxxx/diag

values.

Table11.2: Sensor Configuration and Calibration

Command Description Response Example

get_config_param
<active/staged>

Returns all active
or staged JSON-
formatted sensor con-
figuration. Note: The
get_config_param active
command is function-
ally the same as the
deprecated command
get_config_txt.

{
"udp_ip": "169.254.175.254",
"udp_dest": "169.254.175.254",
"udp_port_lidar": 7502,
"udp_port_imu": 7503,
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_

↪→DUAL",
"udp_profile_imu": "LEGACY",
"columns_per_packet": 16,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"sync_pulse_in_polarity": "ACTIVE_HIGH",
"nmea_in_polarity": "ACTIVE_HIGH",
"nmea_ignore_valid_char": 0,
"nmea_baud_rate": "BAUD_9600",
"nmea_leap_seconds": 0,
"multipurpose_io_mode": "OFF",
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"sync_pulse_out_frequency": 1,
"sync_pulse_out_angle": 360,
"sync_pulse_out_pulse_width": 10,
"auto_start_flag": 1,
"operating_mode": "NORMAL",
"lidar_mode": "1024x10",
"azimuth_window": [90000, 270000],
"signal_multiplier": 1,
"phase_lock_enable": false,
"phase_lock_offset": 0
}

get_sensor_info Returns JSON-formatted
sensor metadata: serial
number, hardware and
software revision, and
sensor status.

{
"prod_line": "OS-1-128",
"prod_pn": "840-103575-06",
"prod_sn": "992139000666",
"image_rev": "ousteros-image-prod-aries-v2.3.

↪→0-rc.1+20220319004702.staging",
"build_rev": "v2.3.0-rc.1",
"build_date": "2022-03-18T20:00:29Z",
"status": "RUNNING",
"initialization_id": 9599936,
"base_pn": "",
"base_sn": "",
"proto_rev": ""

}

continues on next page

73

Table 11.2 – continued from previous page

Command Description Response Example

get_time_info Returns JSON-formatted
sensor timing configu-
ration and status of udp
timestamp, sync_pulse_in,
and multipurpose_io.

{
"timestamp":

{
"time": 3709.04727264,
"mode": "TIME_FROM_INTERNAL_OSC",

"time_options":
{

"ptp_1588": 3718,
"sync_pulse_in": 1,
"internal_osc": 3709

}
},

"sync_pulse_in":
{
"locked": 0,
"polarity": "ACTIVE_HIGH",
"diagnostics":

{
"last_period_nsec": 0,
"count": 1,
"count_unfiltered": 0

}
},

"multipurpose_io":
{
"mode": "OFF",
"sync_pulse_out":
{
"polarity": "ACTIVE_HIGH",
"frequency_hz": 1,
"angle_deg": 360,
"pulse_width_ms": 10

},

continues on next page

74

Table 11.2 – continued from previous page

Command Description Response Example

get_time_info **Continued from previous
page** "nmea":

{
"locked": 0,
"polarity": "ACTIVE_HIGH",
"ignore_valid_char": 0,
"baud_rate": "BAUD_9600",
"leap_seconds": 0,
"diagnostics":
{

"decoding":
{

"utc_decoded_count": 0,
"date_decoded_count": 0,
"not_valid_count": 0,
"last_read_message": ""

},
"io_checks":
{

"start_char_count": 0,
"char_count": 0,
"bit_count": 1,
"bit_count_unfiltered": 0

}
}

}
}

}

continues on next page

75

Table 11.2 – continued from previous page

Command Description Response Example

get_beam_intrinsics Returns JSON-formatted
beam altitude and az-
imuth offsets, in degrees.
Length of arrays is equal
to the number of chan-
nels in the sensor. Also
returns distance between
lidar origin and beam ori-
gin in mm, to be used for
point cloud calculations.

{
"beam_altitude_angles": [21.01, 20.72, 20.42,

20.1, 19.79, 19.48, 19.17,
18.84, 18.55, 18.22, 17.9, 17.6,
17.27, 16.96, 16.65, 16.32, 15.97,
15.65, 15.34, 15.01, 14.67, 14.35,
14.01, 13.68, 13.33, 13.02, 12.67,
12.34, 11.99, 11.65, 11.33, 10.98,
10.64, 10.28, 9.949999999999999,
9.609999999999999, 9.27, 8.92, 8.57,
8.23, 7.88, 7.54, 7.18, 6.84, 6.47,
6.13, 5.78, 5.45, 5.09, 4.73,
4.41, 4.05, 3.69, 3.32, 2.98,
2.63, 2.27, 1.93, 1.57, 1.22,
0.85, 0.5, 0.15, -0.19, -0.55, -0.92,

-1.25, -1.63, -1.98, -2.31, -2.67,
-3.04, -3.4, -3.74, -4.09, -4.45, -4.8,
-5.15, -5.5, -5.87, -6.21, -6.57, -6.91,
-7.25, -7.62, -7.95, -8.300000000000001,
-8.65, -9.01, -9.35, -9.69, -10.05,
-10.39, -10.74, -11.09, -11.42, -11.77,
-12.11, -12.45, -12.8, -13.14, -13.47,
-13.81, -14.15, -14.48, -14.82, -15.13,
-15.47, -15.81, -16.15, -16.48, -16.8,
-17.15, -17.48, -17.79, -18.12, -18.47,
-18.77, -19.09, -19.42, -19.73, -20.06,
-20.36, -20.69, -21, -21.32, -21.62, -21.94],

"beam_azimuth_angles": [4.23, 1.41, -1.4,
-4.21, 4.22, 1.42, -1.41, -4.22, 4.23,
1.41, -1.42, -4.21, 4.23, 1.42, -1.4,

-4.2, 4.23, 1.41, -1.39, -4.21, 4.25,
1.43, -1.41,-4.22, 4.24, 1.44, -1.41,

-4.22, 4.23, 1.42, -1.38, -4.22, 4.24,
1.42, -1.4, -4.23, 4.26, 1.44, -1.41,

-4.23, 4.24, 1.44, -1.41, -4.23, 4.24,
1.42, -1.41, -4.24, 4.25, 1.42, -1.39,

-4.22, 4.25, 1.41, -1.4, -4.23, 4.24,
1.43, -1.41, -4.23, 4.24, 1.42, -1.41,

-4.23, 4.25, 1.42, -1.4, -4.24, 4.24,
1.44, -1.4, -4.24, 4.24, 1.43, -1.4, -4.24,
4.25, 1.43, -1.41, -4.24, 4.25, 1.42, -1.42,

-4.22, 4.24, 1.43, -1.4, -4.24, 4.25, 1.44,
-1.41, -4.24, 4.25, 1.42, -1.41, -4.24,
4.25, 1.42, -1.41, -4.25, 4.26, 1.43, -1.41,

-4.26, 4.27, 1.43, -1.4, -4.24, 4.25, 1.43,
-1.4, -4.24, 4.26, 1.42, -1.4, -4.25, 4.26,
1.43, -1.41, -4.26, 4.26, 1.42, -1.42,
-4.26, 4.25, 1.42, -1.42, -4.27],

"lidar_origin_to_beam_origin_mm": 15.806
}

continues on next page

76

Table 11.2 – continued from previous page

Command Description Response Example

get_imu_intrinsics Returns JSON-formatted
IMU transformation ma-
trix needed to transform
to the Sensor Coordinate
Frame.

{
"imu_to_sensor_transform":

[
1, 0, 0, 6.253, 0, 1, 0, -11.775,
0, 0, 1, 7.645, 0, 0, 0, 1

]
}

get_lidar_intrinsics Returns JSON-formatted
lidar transformation ma-
trix needed to transform
to the Sensor Coordinate
Frame.

{
"lidar_to_sensor_transform":
[

-1, 0, 0, 0, 0, -1, 0, 0, 0, 0,
1, 36.18, 0, 0, 0, 1

]
}

get_alerts
<START_CURSOR>

Returns JSON-formatted
sensor diagnostic infor-
mation.
The log list contains alerts
when they were activated
or deactivated. An op-
tional START_CURSOR argu-
ment specifies where the
log should start.
The active list contains all
currently active alerts.

{
"log":

[
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 0,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced

it is not reachable on the
provided not reachable on
IMU data port; check that
udp_dest and udp_port_imu
configured on the sensor matches
client IP and port.",

"msg_verbose": "Failed to send
imu UDP data to destination
host 169.254.175.254:7503",

"realtime": "39850161524"
},

continues on next page

77

Table 11.2 – continued from previous page

Command Description Response Example

get_alerts
<START_CURSOR>

**Continued from previous
page** {

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 1,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced

it is not reachable on the
provided lidar data port;
check that udp_dest and
udp_port_lidar configured on
the sensor matches client IP
and port.",

"msg_verbose": "Failed to send
lidar UDP data to destination
host 169.254.175.254:7502",

"realtime": "40842065146"
},
{

"active": true,
"category": "ETHERNET_LINK_BAD",
"cursor": 2,
"id": "0x01000011",
"level": "WARNING",
"msg": "Ethernet link bad, please

check network switch and
harnessing can support
1 Gbps Ethernet.",

"msg_verbose": "Link transitioned
to 0/Unknown",

"realtime": "414257307390"
},
{

"active": true,
"category": "ETHERNET_LINK_BAD",
"cursor": 2,
"id": "0x01000011",
"level": "WARNING",
"msg": "Ethernet link bad, please

check network switch and
harnessing can support
1 Gbps Ethernet.",

"msg_verbose": "Link transitioned
to 0/Unknown",

"realtime": "414257307390"
},

continues on next page

78

Table 11.2 – continued from previous page

Command Description Response Example

get_alerts
<START_CURSOR>

*Continues from previous
page.* {

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 3,
"id": "0x01000016",
"level": "WARNING",
"msg": "Could not send lidar data

UDP packet to host; check that
network is up.",

"msg_verbose": "Failed to send
lidar UDP data to destination
host 169.254.175.254:7502",

"realtime": "414261086316"
},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 4,
"id": "0x01000019",
"level": "WARNING",
"msg": "Could not send IMU UDP

packet to host; check
that network is up.",

"msg_verbose": "Failed to send imu
UDP data to destination
host 169.254.175.254:7503",

"realtime": "414266339945"
},
{

"active": false,
"category": "ETHERNET_LINK_BAD",
"cursor": 5,
"id": "0x01000011",
"level": "WARNING",
"msg": "Ethernet link bad,

please check network switch
and harnessing can support
1 Gbps Ethernet.",

"msg_verbose": "Link transitioned
to 1000/Full",

"realtime": "416337486469"
}

],

continues on next page

79

Table 11.2 – continued from previous page

Command Description Response Example

get_alerts
<START_CURSOR>

*Continues from previous
page.* "next_cursor": 6,

"active":
[

{
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 1,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced

it is not reachable on the
provided lidar data port;
check that udp_dest and
udp_port_lidar configured
on the sensor matches
client IP and port.",

"msg_verbose": "Failed to send
lidar UDP data to destination
host 169.254.175.254:7502",

"realtime": "40842065146"
},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 3,
"id": "0x01000016",
"level": "WARNING",
"msg": "Could not send lidar data

UDP packet to host;
check that network is up.",

"msg_verbose": "Failed to send
lidar UDP data to destination
host 169.254.175.254:7502",

"realtime": "414261086316"
},

continues on next page

80

Table 11.2 – continued from previous page

Command Description Response Example

get_alerts
<START_CURSOR>

*Continues from previous
page.* {

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 0,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced

it is not reachable on the provided
not reachable on IMU data port;
check that udp_dest and
udp_port_imu configured on the
sensor matches client IP
and port.",

"msg_verbose": "Failed to send imu
UDP data to destination host
169.254.175.254:7503",

"realtime": "39850161524"
},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 4,
"id": "0x01000019",
"level": "WARNING",
"msg": "Could not send IMU UDP

packet to host; check that
network is up.",

"msg_verbose": "Failed to send
imu UDP data to destination
host 169.254.175.254:7503",

"realtime": "414266339945"
}

]
}

continues on next page

81

Table 11.2 – continued from previous page

Command Description Response Example

get_lidar_data_format Returns JSON-formatted
response that describes
the structure of a lidar
packet.
columns_per_frame: Num-
ber of measurement
columns per frame. This
can be 512, 1024, or 2048,
depending upon the set
lidar mode.
columns_per_packet: Num-
ber of measurement
blocks contained in a sin-
gle lidar packet. Currently
in v2.2.0 and earlier, this
is 16. Note: This is not
user configurable.
pixel_shift_by_row: Off-
set in terms of pixel count.
Can be used to destag-
ger image. Varies by lidar
mode. Length of this ar-
ray is equal to the number
of channels of the sensor.
pixels_per_column: Num-
ber of channels of the sen-
sor.
column_window: Index of
measurement blocks that
are active. Default is
[0, lidar_mode-1], e.g.
[0,1023]. If there is an
azimuth window set, this
parameter will reflect
which measurement
blocks of data are within
the region of interest.

{
"pixels_per_column": 128,
"columns_per_packet": 16,
"columns_per_frame": 1024,
"pixel_shift_by_row": [24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0]

"column_window": [0, 1023],
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_

↪→DUAL",
"udp_profile_imu": "LEGACY"
}

continues on next page

82

Table 11.2 – continued from previous page

Command Description Response Example

get_lidar_data_format
*Continues from pre-
vious page.*

udp_profile_lidar - Li-
dar data profile for-
mat [Default LEGACY].
udp_profile_lidar - Li-
dar data profile for-
mat [Default LEGACY].
udp_profile_imu - IMU
data profile format [De-
fault LEGACY].

NOTE: This command only
works when the sensor is in
RUNNING status.

get_calibration_status Returns JSON-formatted
calibration status of the
sensor reflectivity. valid:
true/false depending on
calibration status. times-
tamp: if valid is true; time
at which the calibration
was completed.

{
"reflectivity":
{

"valid": true,
"timestamp": "2021-10-05T00:02:36"

}
}

get_telemetry Returns JSON-formatted
response that provides
sensor system state infor-
mation. This includes the
FPGA Timestamp in ns
(Nanoseconds) at which
the information was col-
lected from the FPGA,
Lidar Input Voltage in
mv (Millivolt), Lidar Input
Current in ma (Milliamp),
Internal Temperature of
the sensor in ºC (Degree
Celsius) and Phase Lock
status namely LOCKED,
LOST, DISABLED.

{
"input_current_ma": 758,
"input_voltage_mv": 23606,
"internal_temperature_deg_c": 45,
"phase_lock_status": "DISABLED",
"timestamp_ns": 2962666299310

}

Note: Using get_telemetry, Internal temperature can only be measured with Rev 06 and above sen-
sors.

Note: Phase lock output will not indicate loss of lock if the PTP source is lost.

83

11.2 Querying Active or Staged Parameters

Sensor configurations and operating modes can also be queried over TCP. Below is the command
format:

get_config_param active <parameter> will return the current active configuration parameter values.

get_config_param staged <parameter>will return the parameter values that will take place after issuing a reinitial-
ize command or after sensor reboot.

Warning: The command get_config_txt is deprecated and superseded by get_config_param active,
which provides the same response. get_config_txt will be removed in a future firmware.

An example session using the unix netcat utility is shown below:

$ nc os-991900123456 7501
get_config_param active lidar_mode
1024x10

The following commands will return sensor active or staged configuration parameters:

Table11.3: Sensor Configurations

get_config_param Command Description Response

udp_dest Returns the destination to
which the sensor sends UDP
traffic. Note: udp_ip is the
deprecated parameter name
whose value will always be the
same as udp_dest.

"" (default)

udp_port_lidar Returns the port number of li-
dar UDP data packets.

7502 (default)

udp_port_imu Returns the port number of IMU
UDP data packets.

7503 (default)

sync_pulse_in_polarity Returns the polarity of the
SYNC_PULSE_IN input,
which controls polarity of
SYNC_PULSE_IN pin when
timestamp_mode is set in
TIME_FROM_SYNC_PULSE_IN. Use
ACTIVE_HIGH if PPS is active
high, idle low.

Either ACTIVE_HIGH (default) or AC-
TIVE_LOW

continues on next page

84

Table 11.3 – continued from previous page

get_config_param Command Description Response

sync_pulse_out_polarity Returns the polarity of
SYNC_PULSE_OUT output,
if the sensor is using this for
time synchronization.

Either ACTIVE_HIGH or ACTIVE_LOW (de-
fault)

sync_pulse_out_frequency Returns the output
SYNC_PULSE_OUT pulse
rate in Hz.

1 (default)

sync_pulse_out_angle Returns the angle in terms
of degrees that the sen-
sor traverses between each
SYNC_PULSE_OUT pulse. E.g.
a value of 180 means a sync
pulse is sent out every 180° for
a total of two pulses per revolu-
tion and angular frequency of
20 Hz if the sensor is 1024x10
Hz lidar mode.

360 (default)

sync_pulse_out_pulse_width Returns the output
SYNC_PULSE_OUT pulse
width in ms.

10 (default)

nmea_in_polarity Returns the polarity of NMEA
UART input messages. See
Time Synchronization section
in sensor usermanual for NMEA
use case. Use ACTIVE_HIGH if
UART is active high, idle low,
and start bit is after a falling
edge.

Either ACTIVE_HIGH (default) or AC-
TIVE_LOW

nmea_ignore_valid_char Returns 0 if NMEA UART input
$GPRMC messages should be
ignored if valid character is not
set, and 1 if messages should be
used for time syncing regard-
less of the valid character.

Either 0 (default) or 1

nmea_baud_rate Returns BAUD_9600 (default)
or BAUD_115200 for the ex-
pected baud rate the sensor
is attempting to decode for
NMEA UART input $GPRMC
messages.

Either BAUD_9600 or BAUD_115200

continues on next page

85

Table 11.3 – continued from previous page

get_config_param Command Description Response

nmea_leap_seconds Returns the number of leap sec-
onds that will be added to the
UDP timestamp when calcu-
lating seconds since 00:00:00
Thursday, 1 January 1970. For
Unix Epoch time, this should be
set to 0.

Either 0 (default) or a positive inte-
ger

azimuth_window Returns the visible region of in-
terest of the sensor in millide-
grees. Only data within the
specified bounds of the region
of interest is sent from the sen-
sor.

[0,360000] (defaults to an azimuth
window of 360°)

signal_multiplier Returns the value that the sig-
nal_multiplier is configured. By
default the sensor has a signal
multiplier value of 1.

Either 1 (default) or 2 or 3

udp_profile_lidar Returns the configuration
of the LIDAR data packets.
Valid values are LEGACY [De-
fault], RNG19_RFL8_SIG16_NIR16,
RNG19_RFL8_SIG16_NIR16_DUAL,
RNG15_RFL8_NIR8

LEGACY

udp_profile_imu Returns the configuration of the
IMU data packets. Valid value is
LEGACY

LEGACY

phase_lock_enable Returns whether phase locking
is enabled.

Either false (default) or true

phase_lock_offset Returns the angle in the Lidar
Coordinate Frame that sensors
are locked to in millidegrees if
phase locking is enabled.

Integer between 0 and 360000 inclu-
sive

lidar_mode Returns a string indicating the
horizontal resolution and rota-
tion frequency [Hz].

One of 512x10, 1024x10, 2048x10,
512x20, or 1024x20

timestamp_mode Returns the method used to
timestamp measurements.

One of TIME_FROM_INTERNAL_OSC,
TIME_FROM_PTP_1588, or
TIME_FROM_SYNC_PULSE_IN

continues on next page

86

Table 11.3 – continued from previous page

get_config_param Command Description Response

multipurpose_io_mode Returns the configured mode
of the MULTIPURPOSE_IO pin.
See Time Synchronization sec-
tion in sensor user manual for a
detailed description of each op-
tion.

One of OFF (default), INPUT_NMEA_UART,
OUTPUT_FROM_INTERNAL_OSC, OUT-
PUT_FROM_SYNC_PULSE_IN, OUT-
PUT_FROM_PTP_1588, or OUT-
PUT_FROM_ENCODER_ANGLE

operating_mode Returns the operating mode
that the sensor is in. NORMAL
is the default value. STANDBY
is a low power (5W) operating
mode. Note: auto_start_flag is
soon to be deprecated parame-
ter name where auto_start_flag
0 is equivalent to operating_mode
STANDBY and auto_start_flag 1
is equivalent to operating_mode
NORMAL.

Either NORMAL (default) or STANDBY
(low power/standby state)

11.3 Setting Configuration Parameters

set_config_param <parameter> <value> will set new values for configuration parameters, which will take
effect after issuing the reinitialize command or after sensor reset.

reinitialize will reinitialize the sensor so the staged values of the parameters will take effect imme-
diately.

save_config_params will write new values of active parameters into a configuration file, so they will
persist after sensor reset. In order to permanently change a parameter in the configuration file, first
use set_config_param to update the parameter in a staging area, then use reinitialize to make that
parameter active. Only after the parameter is made active will save_config_params capture it to persist
after reset.

Warning: The command write_config_txt will be deprecated in a future firmware. The command
save_config_params provides the same response.

While in STANDBYmode, we can set the config parameters, but it will not take effect until we switch
the sensor back to NORMALmode.

set_udp_dest_auto will automatically determine the sender’s IP address at the time the command was
sent, and set it as the destination of UDP traffic. This takes effect after issuing a reinitialize com-
mand. Using this command has the same effect as using set_config_param udp_dest <ip address>.

87

An example session using the unix netcat utility is shown below.

Note: In the example below, to distinguish between the command and expected response, a dash
has been added before the expected response. The actual response will be without the dash.

$ nc os-991900123456 7501
set_config_param lidar_mode 512x20
-set_config_param
set_udp_dest_auto
-set_udp_dest_auto
reinitialize
-reinitialize
save_config_params
-save_config_params

The following commands will set sensor configuration parameters:

Note: Each of the following commands have two responses: * set_config_param on Success * error:
Otherwise

Table11.4: Setting Config Parameters

set_config_param Command Description

udp_dest <destination> Set the <destination> to which the sensor sends UDP
traffic. On boot, the sensor will not output data until this
is set. If the IP address is not known, this can also be ac-
complished with the set_udp_dest_auto command (details
above). The sensor supports unicast, IPv4 broadcast
(255.255.255.255), IPv4 multicast (239.x.x.x), and IPv6
multicast (ff02::01) addresses. Note: udp_ip is the depre-
cated parameter name. However during the deprecation
phase, either udp_ip or udp_destmaybe used. When either
one is updated, the other parameter value will be updated
to match upon setting the parameter value.

udp_port_lidar <port> Set the <port> on udp_dest to which lidar data will be sent
(7502, default).

udp_port_imu <port> Set the <port> on udp_dest to which IMU data will be sent
(7503, default).

sync_pulse_in_polarity <ACTIVE_HIGH/
ACTIVE_LOW>

Set the polarity of SYNC_PULSE_IN input, which controls
polarity of SYNC_PULSE_IN pin when timestamp_mode
is set in TIME_FROM_SYNC_PULSE_IN.

sync_pulse_out_polarity <ACTIVE_HIGH/
ACTIVE_LOW>

Set the polarity of SYNC_PULSE_OUT output, if the sen-
sor is set as themaster sensor used for time synchroniza-
tion.

continues on next page

88

Table 11.4 – continued from previous page

set_config_param Command Description

sync_pulse_out_frequency <rate in Hz> Set output SYNC_PULSE_OUT rate. Valid inputs are in-
tegers >0 Hz, but also limited by the criteria described in
the Time Synchronization section of the Firmware User
Manual.

sync_pulse_out_angle <angle in deg> Set output SYNC_PULSE_OUT rate defined by rotation
angle. E.g. a value of 180 means a sync pulse is sent
out every 180° for a total of two pulses per revolution and
angular frequency of 20 Hz if the sensor is 1024x10 Hz
lidar mode. Valid inputs are integers between 0 and 360
inclusive but also limited by the criteria described in the
Time Synchronization section of Firmware User Manual.

sync_pulse_out_pulse_width <width in
ms>

Set output SYNC_PULSE_OUT pulse width in ms, in 1 ms
increments. Valid inputs are integers greater than 0 ms,
but also limited by the criteria described in the Time Syn-
chronization section of Firmware User Manual.

nmea_in_polarity <ACTIVE_HIGH/
ACTIVE_LOW>

Set the polarity of NMEAUART input $GPRMCmessages.
See Time Synchronization section in sensor user manual
for NMEAuse case. Use ACTIVE_HIGH if UART is active high,
idle low, and start bit is after a falling edge.

nmea_ignore_valid_char <1/0> Set 0 if NMEA UART input $GPRMC messages should be
ignored if valid character is not set, and 1 if messages
should be used for time syncing regardless of the valid
character.

nmea_baud_rate <rate in baud/s> Set BAUD_9600 (default) or BAUD_115200 for the expected
baud rate the sensor is attempting to decode for NMEA
UART input $GPRMC messages.

nmea_leap_seconds <s> Set an integer number of leap seconds that will be added
to the UDP timestamp when calculating seconds since
00:00:00 Thursday, 1 January 1970. For Unix Epoch time,
this should be set to 0.

azimuth_window <[min_bound_millideg,
max_bound_millideg]>

Set the visible region of interest of the sensor in millide-
grees. Only data from within the specified azimuth win-
dow bounds is sent.

phase_lock_enable <true/false> Set whether phase locking is enabled. See Firmware User
Manual for more details on using phase lock.

phase_lock_offset <angle in millideg> Set the angle in the Lidar Coordinate Frame that sensors
are locked to in millidegrees if phase locking is enabled.
Angle is traversed at the top of the second.

continues on next page

89

Table 11.4 – continued from previous page

set_config_param Command Description

lidar_mode <mode> Set the horizontal resolution and rotation rate of the sen-
sor. Valid modes are 512x10, 1024x10, 2048x10, 512x20, and
1024x20. The effective range of the sensor is increased by
15-20% for every halving of the number of points gath-
ered e.g. 512x10 has 15-20% longer range than 512x20.

timestamp_mode <mode> Set the method used to timestamp measure-
ments. Valid modes are TIME_FROM_INTERNAL_OSC,
TIME_FROM_SYNC_PULSE_IN, or TIME_FROM_PTP_1588.

multipurpose_io_mode <mode> Configure the mode of the MULTIPURPOSE_IO pin. Valid
modes are OFF, INPUT_NMEA_UART, OUTPUT_FROM_INTERNAL_OSC,
OUTPUT_FROM_SYNC_PULSE_IN, OUTPUT_FROM_PTP_1588, or OUT-
PUT_FROM_ENCODER_ANGLE.

udp_profile_lidar Configure the LIDAR data profile, valid modes
are LEGACY [Default], RNG19_RFL8_SIG16_NIR16,
RNG19_RFL8_SIG16_NIR16_DUAL, RNG15_RFL8_NIR8.

operating_mode <NORMAL/STANDBY> Set NORMAL to put the sensor into a normal operatingmode
or STANDBY to put the sensor into a low power (5W) operat-
ingmodewhere themotor does not spin and lasers do not
fire. Note: auto_start_flag <1/0> is soon to be deprecated
parameter name where auto_start_flag 0 is equivalent to
operating_mode STANDBY and auto_start_flag 1 is equiva-
lent to operating_mode NORMAL. However, during the dep-
recation phase, either operating_mode or auto_start_flag
may be used. When either one is updated, the other pa-
rameter value will be updated to match upon setting the
parameter value.

90

Table11.5: Reinitialize, Write Configuration, and Auto Destination UDP

Command Command Description Response

reinitialize or reinit Restarts the sensor.
Changes to lidar, multi-
purpose_io, and times-
tamp modes will only
take effect after reinitial-
ization.

reinitialize or reinit on success

save_config_params Makes all current param-
eter settings persist after
reboot.

save_config_params on success

set_udp_dest_auto Set the destination of
UDP traffic to the des-
tination address that
issued the command.

set_udp_dest_auto on success

91

12 HTTP API Reference Guide

This reference guide documents the interface for HTTP API and is accessible via /api/v1 on the sensor
hosted HTTP server.

The sensor can be queried and configured using anHTTPGET requests. This can be done using several
different tools such as httpie, curl, Advanced REST Client, etc.

Here is an example using curl command:

$ curl --request GET --url http://169.254.198.184/api/v1/sensor/metadata/lidar_intrinsics

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 36.18, 0, 0, 0, 1]

}

12.1 Sensor Metadata

12.1.1 GET /api/v1/sensor/metadata/sensor_info

GET 169.254.198.184/api/v1/sensor/metadata/sensor_info
Get the sensor information

GET /api/v1/sensor/metadata/sensor_info HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-length: 321
content-type: application/json

{
"base_pn": "",
"base_sn": "",
"build_date": "2022-03-31T23:38:32Z",
"build_rev": "v2.3.0-rc.2",
"image_rev": "ousteros-image-prod-aries-v2.3.0-rc.2+20220401070201.staging",
"initialization_id": 5431288,
"prod_line": "OS-1-128",
"prod_pn": "840-103575-06",
"prod_sn": "992139000666",
"proto_rev": "",
"status": "RUNNING"

}

statuscode 200 No error

Description Returns JSON-formatted response that includes serial number, product number, FW image revision
and sensor status along with other parameters as shown is provided.

92

12.1.2 GET /api/v1/sensor/metadata/lidar_data_format

GET 169.254.198.184/api/v1/sensor/metadata/lidar_data_format
Get the sensor lidar data format

GET /api/v1/sensor/metadata/lidar_data_format HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-type: application/json
content-length: 661

{
"column_window": [256, 768],
"pixel_shift_by_row": [24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0],

"columns_per_packet": 16,
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL"
"udp_profile_imu": "LEGACY",
"pixels_per_column": 128,
"columns_per_frame": 1024,

}

statuscode 200 No error

Description Returns JSON-formatted response that describes the structure of a lidar packet.

columns_per_frame: Number of measurement columns per frame. This can be 512, 1024, or 2048, depending
upon the set lidar mode.

columns_per_packet: Number of measurement blocks contained in a single lidar packet. Currently in v2.2.0
and earlier, this is 16. Note: This is not user configurable.

pixel_shift_by_row: Offset in terms of pixel count. Can be used to destagger image. Varies by lidar mode.
Length of this array is equal to the number of channels of the sensor.

pixels_per_column: Number of channels of the sensor.

column_window: Index of measurement blocks that are active. Default is [0, lidar_mode-1], e.g. [0,1023]. If
there is an azimuth window set, this parameter will reflect which measurement blocks of data are within
the region of interest.

udp_profile_lidar: Lidar data profile format. Default LEGACY.

udp_profile_lidar: Lidar data profile format. Default LEGACY.

udp_profile_imu: IMU data profile format. Default LEGACY.

93

NOTE: This command only works when the sensor is in RUNNING status.

12.1.3 GET /api/v1/sensor/metadata/beam_intrinsics

GET 169.254.198.184/api/v1/sensor/metadata/beam_intrinsics
Get the sensor beam intrinsics

GET /api/v1/sensor/metadata/beam_intrinsics HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-type: application/json
content-length: 4506

{
"beam_azimuth_angles": [4.2300000000000004, 1.4099999999999999, -1.3999999999999999, -4.21,
4.2199999999999998, 1.4199999999999999, -1.4099999999999999, -4.2199999999999998, 4.2300000000000004,
1.4099999999999999, -1.4199999999999999, -4.21, 4.2300000000000004, 1.4199999999999999,
-1.3999999999999999, -4.2000000000000002, 4.2300000000000004, 1.4099999999999999, -1.3899999999999999,
-4.21, 4.25, 1.4299999999999999, -1.4099999999999999, -4.2199999999999998, 4.2400000000000002,
1.4399999999999999, -1.4099999999999999, -4.2199999999999998, 4.2300000000000004, 1.4199999999999999,
-1.3799999999999999, -4.2199999999999998, 4.2400000000000002, 1.4199999999999999, -1.3999999999999999,
-4.2300000000000004, 4.2599999999999998, 1.4399999999999999, -1.4099999999999999, -4.2300000000000004,
4.2400000000000002, 1.4399999999999999, -1.4099999999999999, -4.2300000000000004, 4.2400000000000002,
1.4199999999999999, -1.4099999999999999, -4.2400000000000002, 4.25, 1.4199999999999999,
-1.3899999999999999, -4.2199999999999998, 4.25, 1.4099999999999999, -1.3999999999999999,
-4.2300000000000004, 4.2400000000000002, 1.4299999999999999, -1.4099999999999999, -4.2300000000000004,
4.2400000000000002, 1.4199999999999999, -1.4099999999999999, -4.2300000000000004, 4.25,
1.4199999999999999, -1.3999999999999999, -4.2400000000000002, 4.2400000000000002, 1.4399999999999999,
-1.3999999999999999, -4.2400000000000002, 4.2400000000000002, 1.4299999999999999, -1.3999999999999999,
-4.2400000000000002, 4.25, 1.4299999999999999, -1.4099999999999999, -4.2400000000000002, 4.25,
1.4199999999999999, -1.4199999999999999, -4.2199999999999998, 4.2400000000000002, 1.4299999999999999,
-1.3999999999999999, -4.2400000000000002, 4.25, 1.4399999999999999, -1.4099999999999999,
-4.2400000000000002, 4.25, 1.4199999999999999, -1.4099999999999999, -4.2400000000000002, 4.25,
1.4199999999999999, -1.4099999999999999, -4.25, 4.2599999999999998, 1.4299999999999999,
-1.4099999999999999, -4.2599999999999998, 4.2699999999999996, 1.4299999999999999, -1.3999999999999999,
-4.2400000000000002, 4.25, 1.4299999999999999, -1.3999999999999999, -4.2400000000000002,
4.2599999999999998, 1.4199999999999999, -1.3999999999999999, -4.25, 4.2599999999999998,
1.4299999999999999, -1.4099999999999999, -4.2599999999999998, 4.2599999999999998, 1.4199999999999999,
-1.4199999999999999, -4.2599999999999998, 4.25, 1.4199999999999999, -1.4199999999999999,
-4.2699999999999996],

"beam_altitude_angles": [21.010000000000002, 20.719999999999999,
20.420000000000002, 20.100000000000001, 19.789999999999999, 19.48, 19.170000000000002, 18.84,
18.550000000000001, 18.219999999999999, 17.899999999999999, 17.600000000000001, 17.27,
16.960000000000001, 16.649999999999999, 16.32, 15.970000000000001, 15.65, 15.34, 15.01, 14.67, 14.35,
14.01, 13.68, 13.33, 13.02, 12.67, 12.34, 11.99, 11.65, 11.33, 10.98, 10.640000000000001,
10.279999999999999, 9.9499999999999993, 9.6099999999999994, 9.2699999999999996, 8.9199999999999999,
8.5700000000000003, 8.2300000000000004, 7.8799999999999999, 7.54, 7.1799999999999997,
6.8399999999999999, 6.4699999999999998, 6.1299999999999999, 5.7800000000000002, 5.4500000000000002,
5.0899999999999999, 4.7300000000000004, 4.4100000000000001, 4.0499999999999998, 3.6899999999999999,
3.3199999999999998, 2.98, 2.6299999999999999, 2.27, 1.9299999999999999, 1.5700000000000001, 1.22,
0.84999999999999998, 0.5, 0.14999999999999999, -0.19, -0.55000000000000004, -0.92000000000000004,
-1.25, -1.6299999999999999, -1.98,-2.3100000000000001, -2.6699999999999999, -3.04,

(continues on next page)

94

(continued from previous page)

-3.3999999999999999, -3.7400000000000002, -4.0899999999999999, -4.4500000000000002,
-4.7999999999999998, -5.1500000000000004, -5.5, -5.8700000000000001, -6.21, -6.5700000000000003,
-6.9100000000000001, -7.25, -7.6200000000000001, -7.9500000000000002, -8.3000000000000007,
-8.6500000000000004, -9.0099999999999998, -9.3499999999999996, -9.6899999999999995,
-10.050000000000001, -10.390000000000001, -10.74, -11.09, -11.42, -11.77, -12.109999999999999,
-12.449999999999999, -12.800000000000001, -13.140000000000001, -13.470000000000001,
-13.81, -14.15, -14.48, -14.82, -15.130000000000001, -15.470000000000001, -15.81,
-16.149999999999999, -16.48, -16.800000000000001, -17.149999999999999, -17.48, -17.789999999999999,
-18.120000000000001, -18.469999999999999, -18.77, -19.09, -19.420000000000002, -19.73,
-20.059999999999999, -20.359999999999999, -20.690000000000001, -21, -21.32, -21.620000000000001,
-21.940000000000001],

"lidar_origin_to_beam_origin_mm": 15.805999999999999
}

status code 200 No error

Description Returns JSON-formatted beam altitude and azimuth offsets, in degrees. Length of arrays is equal
to the number of channels in the sensor. Also returns distance between lidar origin and beam origin in mm,
to be used for point cloud calculations.

12.1.4 GET /api/v1/sensor/metadata/imu_intrinsics

GET 169.254.198.184/api/v1/sensor/metadata/imu_intrinsics
Get the sensor imu intrinsics

GET /api/v1/sensor/metadata/imu_intrinsics HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-type: application/json
content-length: 117
{

"imu_to_sensor_transform": [1, 0, 0, 6.2530000000000001,
0, 1, 0, -11.775, 0, 0, 1, 7.6449999999999996, 0, 0, 0, 1]

}

status code 200 No error

Description Returns JSON-formatted IMU transformation matrix needed to transform to the Sensor Coordinate
Frame.

95

12.1.5 GET /api/v1/sensor/metadata/lidar_intrinsics

GET 169.254.198.184/api/v1/sensor/metadata/lidar_intrinsics
Get the sensor lidar intrinsics

GET /api/v1/sensor/metadata/lidar_intrinsics HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-type: application/json
content-length: 85

{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 36.18, 0, 0, 0, 1]

}

status code 200 No error

Description Returns JSON-formatted lidar transformationmatrix needed to transform to the Sensor Coordinate
Frame.

12.1.6 GET /api/v1/sensor/metadata/calibration_status

GET 169.254.198.184/api/v1/sensor/metadata/calibration_status
Get the sensor calibration status

GET /api/v1/sensor/metadata/calibration_status HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-type: application/json
content-length: 69

{
"reflectivity":
{

"timestamp": "2021-10-05T00:02:36",
"valid": true

}
}

status code 200 No error

Description Returns JSON formatted calibration status of the sensor reflectivity. valid: true/false depending
on calibration status. timestamp: if valid is true; time at which the calibration was completed.

96

12.1.7 GET /api/v1/sensor/metadata

GET 169.254.198.184/api/v1/sensor/metadata
Get the sensor metadata information

GET /api/v1/sensor/metadata HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-type: application/json
content-length: 6675
{

"config_params":
{
"signal_multiplier": 1,
"udp_dest": "169.254.175.254",
"multipurpose_io_mode": "OFF",
"udp_port_lidar": 7502,
"nmea_leap_seconds": 0,
"nmea_in_polarity": "ACTIVE_HIGH",
"sync_pulse_out_pulse_width": 10,
"timestamp_mode": "TIME_FROM_INTERNAL_OSC",
"lidar_mode": "1024x10",
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL",
"nmea_ignore_valid_char": 0,
"udp_profile_imu": "LEGACY",
"sync_pulse_out_frequency": 1,
"operating_mode": "NORMAL",
"udp_ip": "169.254.175.254",
"columns_per_packet": 16,
"nmea_baud_rate": "BAUD_9600",
"phase_lock_enable": false,
"azimuth_window": [90000, 270000],
"udp_port_imu": 7503,
"sync_pulse_out_angle": 360,
"auto_start_flag": 1,
"sync_pulse_out_polarity": "ACTIVE_HIGH",
"phase_lock_offset": 0,
"sync_pulse_in_polarity": "ACTIVE_HIGH"

},
"sensor_info":
{
"image_rev": "ousteros-image-prod-aries-v2.3.0-rc.1+20220319004702.staging",
"build_rev": "v2.3.0-rc.1",
"prod_sn": "992139000666",
"initialization_id": 5431287,
"base_sn": "",
"build_date": "2022-03-18T20:00:29Z",
"prod_pn": "840-103575-06",
"prod_line": "OS-1-128",
"proto_rev": "",
"status": "RUNNING",
"base_pn": ""

},
"beam_intrinsics":

(continues on next page)

97

(continued from previous page)

{
"beam_azimuth_angles": [4.2300000000000004, 1.4099999999999999, -1.3999999999999999,

-4.21, 4.2199999999999998, 1.4199999999999999, -1.4099999999999999, -4.2199999999999998,
4.2300000000000004, 1.4099999999999999, -1.4199999999999999, -4.21, 4.2300000000000004,
1.4199999999999999, -1.3999999999999999, -4.2000000000000002, 4.2300000000000004,
1.4099999999999999, -1.3899999999999999, -4.21, 4.25, 1.4299999999999999,

-1.4099999999999999, -4.2199999999999998, 4.2400000000000002, 1.4399999999999999,
-1.4099999999999999, -4.2199999999999998, 4.2300000000000004, 1.4199999999999999,
-1.3799999999999999, -4.2199999999999998, 4.2400000000000002, 1.4199999999999999,
-1.3999999999999999, -4.2300000000000004, 4.2599999999999998, 1.4399999999999999,
-1.4099999999999999, -4.2300000000000004, 4.2400000000000002, 1.4399999999999999,
-1.4099999999999999, -4.2300000000000004, 4.2400000000000002, 1.4199999999999999,
-1.4099999999999999, -4.2400000000000002, 4.25, 1.4199999999999999, -1.3899999999999999,
-4.2199999999999998, 4.25, 1.4099999999999999, -1.3999999999999999, -4.2300000000000004,
4.2400000000000002, 1.4299999999999999, -1.4099999999999999, -4.2300000000000004,
4.2400000000000002, 1.4199999999999999, -1.4099999999999999, -4.2300000000000004, 4.25,
1.4199999999999999, -1.3999999999999999, -4.2400000000000002, 4.2400000000000002,
1.4399999999999999, -1.3999999999999999, -4.2400000000000002, 4.2400000000000002,
1.4299999999999999, -1.3999999999999999, -4.2400000000000002, 4.25, 1.4299999999999999,

-1.4099999999999999, -4.2400000000000002, 4.25, 1.4199999999999999, -1.4199999999999999,
-4.2199999999999998, 4.2400000000000002, 1.4299999999999999, -1.3999999999999999,
-4.2400000000000002, 4.25, 1.4399999999999999, -1.4099999999999999, -4.2400000000000002,
4.25, 1.4199999999999999, -1.4099999999999999, -4.2400000000000002, 4.25,
1.4199999999999999, -1.4099999999999999, -4.25, 4.2599999999999998, 1.4299999999999999,

-1.4099999999999999, -4.2599999999999998, 4.2699999999999996, 1.4299999999999999,
-1.3999999999999999, -4.2400000000000002, 4.25, 1.4299999999999999, -1.3999999999999999,
-4.2400000000000002, 4.2599999999999998, 1.4199999999999999, -1.3999999999999999, -4.25,
4.2599999999999998, 1.4299999999999999, -1.4099999999999999, -4.2599999999999998,
4.2599999999999998, 1.4199999999999999, -1.4199999999999999, -4.2599999999999998, 4.25,
1.4199999999999999, -1.4199999999999999, -4.2699999999999996],

"beam_altitude_angles": [21.010000000000002, 20.719999999999999, 20.420000000000002,
20.100000000000001, 19.789999999999999, 19.48, 19.170000000000002, 18.84,
18.550000000000001, 18.219999999999999, 17.899999999999999, 17.600000000000001,
17.27, 16.960000000000001, 16.649999999999999, 16.32, 15.970000000000001, 15.65, 15.34,
15.01, 14.67, 14.35, 14.01, 13.68, 13.33, 13.02, 12.67, 12.34, 11.99, 11.65, 11.33,
10.98, 10.640000000000001, 10.279999999999999, 9.9499999999999993, 9.6099999999999994,
9.2699999999999996, 8.9199999999999999, 8.5700000000000003, 8.2300000000000004,
7.8799999999999999, 7.54, 7.1799999999999997, 6.8399999999999999, 6.4699999999999998,
6.1299999999999999, 5.7800000000000002, 5.4500000000000002, 5.0899999999999999,
4.7300000000000004, 4.4100000000000001, 4.0499999999999998, 3.6899999999999999,
3.3199999999999998, 2.98, 2.6299999999999999, 2.27, 1.9299999999999999, 1.5700000000000001,
1.22, 0.84999999999999998, 0.5, 0.14999999999999999, -0.19, -0.55000000000000004,

-0.92000000000000004, -1.25, -1.6299999999999999, -1.98, -2.3100000000000001,
-2.6699999999999999, -3.04, -3.3999999999999999, -3.7400000000000002, -4.0899999999999999,
-4.4500000000000002, -4.7999999999999998, -5.1500000000000004, -5.5, -5.8700000000000001,
-6.21, -6.5700000000000003, -6.9100000000000001, -7.25, -7.6200000000000001,
-7.9500000000000002, -8.3000000000000007, -8.6500000000000004, -9.0099999999999998,
-9.3499999999999996, -9.6899999999999995, -10.050000000000001, -10.390000000000001, -10.74,
-11.09, -11.42, -11.77, -12.109999999999999, -12.449999999999999, -12.800000000000001,
-13.140000000000001, -13.470000000000001, -13.81, -14.15, -14.48, -14.82, -15.130000000000001,
-15.470000000000001, -15.81, -16.149999999999999, -16.48, -16.800000000000001,
-17.149999999999999, -17.48, -17.789999999999999, -18.120000000000001, -18.469999999999999,
-18.77, -19.09, -19.420000000000002, -19.73, -20.059999999999999, -20.359999999999999,
-20.690000000000001, -21, -21.32, -21.620000000000001, -21.940000000000001],

(continues on next page)

98

(continued from previous page)

"lidar_origin_to_beam_origin_mm": 15.805999999999999
},
"calibration_status":

{
"reflectivity":

{
"timestamp": "2021-10-05T00:02:36",
"valid": true

}
},

"lidar_intrinsics":
{
"lidar_to_sensor_transform": [-1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 36.18, 0, 0, 0, 1]

},
"imu_intrinsics":

{
"imu_to_sensor_transform": [1, 0, 0, 6.2530000000000001, 0, 1, 0, -11.775, 0,

0, 1, 7.6449999999999996, 0, 0, 0, 1]
},

"lidar_data_format":
{

"column_window": [256, 768],
"pixel_shift_by_row": [24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,

8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16,
8, 0, 24, 16, 8, 0, 24, 16, 8, 0, 24, 16, 8, 0],

"columns_per_packet": 16,
"udp_profile_lidar": "RNG19_RFL8_SIG16_NIR16_DUAL",
"udp_profile_imu": "LEGACY",
"pixels_per_column": 128,
"columns_per_frame": 1024

}
}

status code 200 No error

12.2 System

12.2.1 GET /api/v1/system/firmware

GET 192.0.2.123/api/v1/system/firmware
Get the firmware version of the sensor

GET /api/v1/system/firmware HTTP/1.1
Host: 192.0.2.123

99

HTTP/1.1 200 OK
Host: 192.0.2.123
content-type: application/json; charset=UTF-8

{
"fw": "ousteros-image-prod-aries-v2.0.0"

}

>json string fw Running firmware image name and version.

statuscode 200 No error

12.2.2 GET /api/v1/system/network

GET 192.0.2.123/api/v1/system/network
Get the system network configuration.

GET /api/v1/system/network HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"carrier": true,
"duplex": "full",
"ethaddr": "bc:0f:a7:00:01:2c",
"hostname": "os-991900123456",
"ipv4": {

"addr": "192.0.2.123/24",
"link_local": "169.254.245.183/16",
"override": null

},
"ipv6": {

"link_local": "fe80::be0f:a7ff:fe00:12c/64"
},
"speed": 1000

}

>json boolean carrier State of Ethernet link, true when physical layer is connected.

>json string duplex Duplex mode of Ethernet link, half or full.

>json string ethaddr Ethernet hardware (MAC) address.

>json string hostname Hostname of the sensor, also used when requesting DHCP address and registering
mDNS hostname.

>json object ipv4 See ipv4 object

>json string ipv6.link_local Link-local IPv6 address.

100

>json integer speed Ethernet physical layer speed in Mbps, should be 1000 Mbps.

statuscode 200 No error

12.2.3 GET /api/v1/system/network/ipv4

GET 192.0.2.123/api/v1/system/network/ipv4
Get the IPv4 network configuration.

GET /api/v1/system/network/ipv4 HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"addr": "192.0.2.123/23",
"link_local": "169.254.245.183/16",
"override": null

}

>json string addr Current global or private IPv4 address.

>json string link_local Link-local IPv4 address.

>json string override Static IP override value, this should match addr. This value will be null when unset and
operating in DHCP or link-localmodes.

statuscode 200 No error

12.2.4 GET /api/v1/system/network/ipv4/override

GET 192.0.2.123/api/v1/system/network/ipv4/override
Get the current IPv4 static IP address override.

GET /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

null

>json string Static IP override value, this should match addr. This value will be null when unset and operating in
DHCPmode.

statuscode 200 No error

101

12.2.5 PUT /api/v1/system/network/ipv4/override

PUT 192.0.2.123/api/v1/system/network/ipv4/override
Override the default dynamic behavior and set a static IP address.

Note: The sensor will reset the network configuration after a short sub second delay (to allow for the
HTTP response to be sent). After this delay the sensor will only be reachable on the newly set IPv4
address.

The sensor needs to be reachable either by link-local or dynamic DHCP configuration or by an existing
static IP override from the host reconfiguring the sensor.

Warning: If an unreachable network address is set, the sensor will become unreachable. Tools
such as avahi-browse, dns-sd, or mDNS browser can help with finding a sensor on a network.

Static IP override should only be used in special use cases. The link-local configuration is recom-
mended where possible.

PUT /api/v1/system/network/ipv4/override HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

"192.0.2.100/24"

<json string Static IP override value with subnet mask

>json string Static IP override value that system will set after a short delay.

statuscode 200 No error

12.2.6 DELETE /api/v1/system/network/ipv4/override

DELETE 192.0.2.123/api/v1/system/network/ipv4/override
Delete the static IP override value and return to dynamic configuration.

Note: The sensor will reset the network configuration after a short sub second delay (to allow for the
HTTP response to be sent). After this delay the sensor will only be reachable on the newly set IPv4
address.

The sensor may be unreachable for several seconds while a link-local lease is obtained from the net-
work or client machine.

DELETE /api/v1/system/network/ipv4/override HTTP/1.1
Host: 192.0.2.123

102

statuscode 204 No error, no content

12.3 Time

12.3.1 GET /api/v1/time

GET 192.0.2.123/api/v1/time
Get the system time configuration for all timing components of the sensor.

GET /api/v1/time HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"ptp": {
"current_data_set": {

"mean_path_delay": 0.0,
"offset_from_master": 0.0,
"steps_removed": 0

},
"parent_data_set": {

"gm_clock_accuracy": 254,
"gm_clock_class": 255,
"gm_offset_scaled_log_variance": 65535,
"grandmaster_identity": "bc0fa7.fffe.003aa6",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "bc0fa7.fffe.003aa6-0",
"parent_stats": 0

},
"port_data_set": {

"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.003aa6-1",
"port_state": "LISTENING",
"version_number": 2

},
"profile": "default",
"time_properties_data_set": {

"current_utc_offset": 37,
(continues on next page)

103

(continued from previous page)

"current_utc_offset_valid": 0,
"frequency_traceable": 0,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 160,
"time_traceable": 0

},
"time_status_np": {

"cumulative_scaled_rate_offset": 0.0,
"gm_identity": "bc0fa7.fffe.003aa6",
"gm_present": false,
"gm_time_base_indicator": 0,
"ingress_time": 0,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": 0,
"scaled_last_gm_phase_change": 0

}
},

"sensor": {
"multipurpose_io": {

"mode": "OFF",
"nmea": {

"baud_rate": "BAUD_9600",
"diagnostics": {

"decoding": {
"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {

"bit_count": 1,
"bit_count_unfiltered": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {

"angle_deg": 360,
"frequency_hz": 1,
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

}
},
"sync_pulse_in": {

"diagnostics": {
"count": 1,
"count_unfiltered": 0,

(continues on next page)

104

(continued from previous page)

"last_period_nsec": 0
},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"timestamp": {

"mode": "TIME_FROM_INTERNAL_OSC",
"time": 311.36525506,
"time_options": {

"internal_osc": 311,
"ptp_1588": 320,
"sync_pulse_in": 1

}
}

},
"system": {

"monotonic": 320.78890018,
"realtime": 320.788918614,
"tracking": {

"frequency": 3.943,
"last_offset": 0.0,
"leap_status": "not synchronised",
"ref_time_utc": 0.0,
"reference_id": "00000000",
"remote_host": "",
"residual_frequency": 0.0,
"rms_offset": 0.0,
"root_delay": 1.0,
"root_dispersion": 1.0,
"skew": 0.0,
"stratum": 0,
"system_time_offset": -1e-09,
"update_interval": 0.0

}
}

}

>json string See sub objects for details.

statuscode 200 No error

12.3.2 GET /api/v1/time/sensor

GET 169.254.198.184/api/v1/time/sensor
Get the sensor time information

GET /api/v1/time/sensor HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
(continues on next page)

105

(continued from previous page)

content-type: application/json
content-length: 773

{
"multipurpose_io": {

"mode": "OFF",
"nmea": {

"baud_rate": "BAUD_9600",
"diagnostics": {

"decoding": {
"date_decoded_count": 0,
"last_read_message": "",
"not_valid_count": 0,
"utc_decoded_count": 0

},
"io_checks": {

"bit_count": 1,
"bit_count_unfiltered": 0,
"char_count": 0,
"start_char_count": 0

}
},
"ignore_valid_char": 0,
"leap_seconds": 0,
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"sync_pulse_out": {

"angle_deg": 360,
"frequency_hz": 1,
"polarity": "ACTIVE_HIGH",
"pulse_width_ms": 10

}
},
"sync_pulse_in": {

"diagnostics": {
"count": 1,
"count_unfiltered": 0,
"last_period_nsec": 0

},
"locked": 0,
"polarity": "ACTIVE_HIGH"

},
"timestamp": {

"mode": "TIME_FROM_INTERNAL_OSC",
"time": 27784.88125111,
"time_options": {

"internal_osc": 27784,
"ptp_1588": 27795,
"sync_pulse_in": 1

}
}

}

106

status code 200 No error

Description Returns JSON-formatted sensor timing configuration and status of udp timestamp, sync_pulse_in,
and multipurpose_io. For more information on these parameters refer to the get_time_info TCP command.

12.3.3 GET /api/v1/time/system

GET 192.0.2.123/api/v1/time/system
Get the operating system time status. These values relate to the sensor operating system clocks,
and not clocks related to hardware timestamp data from the lidar sensor.

GET /api/v1/time/system HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"monotonic": 345083.599570944,
"realtime": 1551814510.730453,
"tracking": {

"frequency": -6.185,
"last_offset": -3.315e-06,
"leap_status": "normal",
"ref_time_utc": 1551814508.1982567,
"reference_id": "70747000",
"remote_host": "ptp",
"residual_frequency": -0.019,
"rms_offset": 4.133e-06,
"root_delay": 1e-09,
"root_dispersion": 0.000128737,
"skew": 1.14,
"stratum": 1,
"system_time_offset": 4.976e-06,
"update_interval": 2

}
}

>json float monotonic Monotonic time of operating system. This timestamp never counts backwards and is the
time since boot in seconds.

>json float realtime Time in seconds since the Unix epoch, should match wall time if synchronized with external
time source.

>json object tracking Operating system time synchronization tracking status. See chronyc tracking documen-
tation for more information.

statuscode 200 No error

System tracking fields of interest:

rms_offset Long-term average of the offset value.

107

https://chrony.tuxfamily.org/manual.html#tracking-command
https://chrony.tuxfamily.org/manual.html#tracking-command

system_time_offset Timedelta (in seconds) between the estimate of the operating system time and the current
true time.

last_offset Estimated local offset on the last clock update.

ref_time_utc UTC Time at which the last measurement from the reference source was processed.

remote_host This is either ptp if the system is synchronizing to a PTP time source or the address of a remote
NTP server the system has selected if the sensor is connected to the Internet.

12.3.4 GET /api/v1/time/ptp

GET 192.0.2.123/api/v1/time/ptp
Get the status of the PTP time synchronization daemon.

Note: See the IEEE 1588-2008 standard for more details on the standard management messages.

GET /api/v1/time/ptp HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8

{
"current_data_set": {

"mean_path_delay": 30110,
"offset_from_master": 224159,
"steps_removed": 1

},
"parent_data_set": {

"gm_clock_accuracy": 33,
"gm_clock_class": 6,
"gm_offset_scaled_log_variance": 20061,
"grandmaster_identity": "001747.fffe.700038",
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_clock_phase_change_rate": 2147483647,
"observed_parent_offset_scaled_log_variance": 65535,
"parent_port_identity": "001747.fffe.700038-1",
"parent_stats": 0

},
"port_data_set": {

"announce_receipt_timeout": 3,
"delay_mechanism": 1,
"log_announce_interval": 1,
"log_min_delay_req_interval": 0,
"log_min_pdelay_req_interval": 0,
"log_sync_interval": 0,
"peer_mean_path_delay": 0,
"port_identity": "bc0fa7.fffe.00012c-1",
"port_state": "SLAVE",
"version_number": 2

(continues on next page)

108

https://ieeexplore.ieee.org/document/4579760

(continued from previous page)

},
"time_properties_data_set": {

"current_utc_offset": 37,
"current_utc_offset_valid": 1,
"frequency_traceable": 1,
"leap59": 0,
"leap61": 0,
"ptp_timescale": 1,
"time_source": 32,
"time_traceable": 1

},
"time_status_np": {

"cumulative_scaled_rate_offset": 0,
"gm_identity": "001747.fffe.700038",
"gm_present": true,
"gm_time_base_indicator": 0,
"ingress_time": 1551814546772493800,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"master_offset": 224159,
"scaled_last_gm_phase_change": 0

}
}

>json object current_data_set Result of the PMC GET CURRENT_DATA_SET command.

>json object parent_data_set Result of the PMC GET PARENT_DATA_SET command.

>json object port_data_set Result of the PMC GET PORT_DATA_SET command.

>json object time_properties_data_set Result of the PMC GET TIME_PROPERTIES_DATA_SET command.

>json object time_status_np Result of the PMC GET TIME_STATUS_NP command. This is a linuxptp non-portable
command.

statuscode 200 No error

Fields of interest:

current_data_set.offset_from_master Offset from master time source in nanoseconds as calculated during
the last update from master.

parent_data_set.grandmaster_identity This should match the local grandmaster clock. If this displays the
sensor’s clock identity (derived from Ethernet hardware address) then this indicates the sensor is not prop-
erly synchronized to a grandmaster.

parent_data_set Various information about the selected master clock.

port_data_set.port_state This value will be SLAVE when a remote master clock is selected. See parent_data_set
for selected master clock.

port_data_set Local sensor PTP configuration values. Grandmaster clock needs tomatch these for proper time
synchronization.

time_properties_data_set PTP properties as given by master clock.

109

time_status_np.gm_identity Selected grandmaster clock identity.

time_status_np.gm_present True when grandmaster has been detected. This may stay true even if grand-
master goes off-line. Use port_data_set.port_state to determine up-to-date synchronization status. When
this is false then the local clock is selected.

time_status_np.ingress_time Indicates when the last PTPmessage was received. Units are in nanoseconds.

time_status_np Linux PTP specific diagnostic values. The Red Hat manual provides some more information on
these fields

12.3.5 GET /api/v1/time/ptp/profile

GET 192.0.2.123/api/v1/time/ptp/profile
Get the active PTP profile of the Ouster sensor

GET /api/v1/time/ptp/profile HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

HTTP/1.1 200 OK
content-length: 9
content-type: application/json; charset=UTF-8

"gptp"

>json string Active PTP profile.

statuscode 200 No error

12.3.6 PUT /api/v1/time/ptp/profile

PUT 192.0.2.123/api/v1/time/ptp/profile
Change the PTP profile of the Ouster sensor

PUT /api/v1/time/ptp/profile HTTP/1.1
Content-Type: application/json
Host: 192.0.2.123

"gptp"

HTTP/1.1 200 OK
content-length: 9
content-type: application/json; charset=UTF-8

"gptp"

<json string PTP profile to be activated, valid options are "default", "gptp", and "automotive-slave"

110

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-using_the_ptp_management_client

>json string Active PTP profile.

statuscode 200 No error

12.4 Alerts, Diagnostics and Telemetry

12.4.1 GET /api/v1/sensor/alerts

GET 169.254.198.184/api/v1/sensor/alerts
Get the sensor lidar intrinsics

GET /api/v1/sensor/alerts HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-length: 3941
content-type: application/json

{
"active": [

{
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 8,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided not reachable on

IMU data port; check that udp_dest and udp_port_imu configured on the sensor
matches client IP and port.",

"msg_verbose": "Failed to send imu UDP data to destination host 169.254.28.205:7503",
"realtime": "1309574110356"

}
],
"log": [

{
"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 0,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided not reachable on

IMU data port; check that udp_dest and udp_port_imu configured on the sensor
matches client IP and port.",

"msg_verbose": "Failed to send imu UDP data to destination host 169.254.28.205:7503",
"realtime": "87914851559"

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 1,
"id": "0x01000015",
"level": "WARNING",

(continues on next page)

111

(continued from previous page)

"msg": "Client machine announced it is not reachable on the provided lidar data port;
check that udp_dest and udp_port_lidar configured on the sensor matches client
IP and port.",

"msg_verbose": "Failed to send lidar UDP data to destination host 169.254.28.205:7502",
"realtime": "88906828916"

},
{

"active": false,
"category": "UDP_TRANSMISSION",
"cursor": 2,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided lidar data port;

check that udp_dest and udp_port_lidar configured on the sensor matches client
IP and port.",

"msg_verbose": "Cleared by reinitialization.",
"realtime": "171640501848"

},
{

"active": false,
"category": "UDP_TRANSMISSION",
"cursor": 3,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided not reachable on

IMU data port; check that udp_dest and udp_port_imu configured on the sensor matches
client IP and port.",

"msg_verbose": "Cleared by reinitialization.",
"realtime": "171640962692"

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 4,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided not reachable on

IMU data port; check that udp_dest and udp_port_imu configured on the sensor
matches client IP and port.",

"msg_verbose": "Failed to send imu UDP data to destination host 169.254.28.205:7503",
"realtime": "188178225997"

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 5,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided lidar data port;

check that udp_dest and udp_port_lidar configured on the sensor matches client
IP and port.",

"msg_verbose": "Failed to send lidar UDP data to destination host 169.254.28.205:7502",
"realtime": "189169539737"

},
(continues on next page)

112

(continued from previous page)

{
"active": false,
"category": "UDP_TRANSMISSION",
"cursor": 6,
"id": "0x01000015",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided lidar data port;

check that udp_dest and udp_port_lidar configured on the sensor matches client
IP and port.",

"msg_verbose": "Cleared by reinitialization.",
"realtime": "1293004145514"

},
{

"active": false,
"category": "UDP_TRANSMISSION",
"cursor": 7,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided not reachable on

IMU data port; check that udp_dest and udp_port_imu configured on the sensor
matches client IP and port.",

"msg_verbose": "Cleared by reinitialization.",
"realtime": "1293004551057"

},
{

"active": true,
"category": "UDP_TRANSMISSION",
"cursor": 8,
"id": "0x01000018",
"level": "WARNING",
"msg": "Client machine announced it is not reachable on the provided not reachable on

IMU data port; check that udp_dest and udp_port_imu configured on the sensor
matches client IP and port.",

"msg_verbose": "Failed to send imu UDP data to destination host 169.254.28.205:7503",
"realtime": "1309574110356"

}
],
"next_cursor": 9

}

status code 200 No error

Description Returns JSON-formatted sensor diagnostic information. - The log list contains alerts when they
were activated or deactivated. An optional START_CURSOR argument specifies where the log should start. -
The active list contains all currently active alerts.

113

12.4.2 GET /api/v1/diagnostics/dump

GET 192.0.2.123/api/v1/diagnostics/dump
Get the diagnostics files of the sensor

GET /api/v1/diagnostics/dump HTTP/1.1
Host: 192.0.2.123

HTTP/1.1 200 OK
content-disposition: attachment; filename="192.0.2.123_diagnostics-dump_29811b9e-2afc-11eb-ae01-
↪→bc0fa700190c.bin"
content-type: application/octet-stream

{binary data}

statuscode 200 No error

12.4.3 GET /api/v1/sensor/telemetry

GET 169.254.198.184/api/v1/sensor/telemetry
Get the sensor telemetry information

GET /api/v1/sensor/telemetry HTTP/1.1
Host: 169.254.198.184

HTTP/1.1 200 OK
content-length: 150
content-type: application/json

{
"input_current_ma": 758,
"input_voltage_mv": 23606,
"internal_temperature_deg_c": 45,
"phase_lock_status": "DISABLED",
"timestamp_ns": 2962666299310

}

status code 200 No error

Description Returns JSON-formatted response that provides sensor system state information. This includes
the FPGA Timestamp in ns (Nanoseconds) at which the information was collected from the FPGA, Lidar
Input Voltage in mv (Millivolt), Lidar Input Current in ma (Milliamp), Internal Temperature of the sensor in
ºC (Degree Celsius) and Phase Lock status namely LOCKED, LOST, DISABLED..

Note: Internal temperature can only be measured with Rev 06 and above sensors.

114

Note: Phase lock output will not indicate loss of lock if the PTP source is lost.

115

13 API Changelog

Version v2.3.0

Date 2022-04-15

Description

“Added”

Add additional options for config parameter udp_profile_lidar, refer to Sensor Configura-
tions.

Add new TCP command get_telemetry, refer to Sensor Configuration and Calibration.

Add the following GET HTTP Commands (Refer to Sensor Metadata for more information):

/api/v1/sensor/metadata/sensor_info

/api/v1/sensor/metadata/lidar_data_format

/api/v1/sensor/metadata/beam_intrinsics

/api/v1/sensor/metadata/imu_intrinsics

/api/v1/sensor/metadata/lidar_intrinsics

/api/v1/sensor/metadata/calibration_status

/api/v1/sensor/metadata

/api/v1/sensor/telemetry

/api/v1/time/sensor

/api/v1/sensor/alerts

Version v2.2.0

Date 2021-12-18

Description

“Added”

Add config parameter udp_profile_lidar, udp_profile_imu and their documentation

Add initialization_id to get_sensor_info TCP command

Add columns_per_packet to get_config_param TCP command

“Changed”

The fields base_pn, base_sn, and proto_rev in get_sensor_info TCP command have been
cleared

116

Version v2.1.3

Date 2021-10-22

Description

“Added”

Added PN support

Version v2.1.2

Date 2021-07-16

Description

“Added”

Add support for minor hardware revisions

Version v2.1.1

Date 2021-06-21

Description

“Added”

Add configuration parameter signal_multiplier and its documentation

“Removed”

Remove deprecated TCP command set_data_dst_ip

Remove deprecated TCP command get_data_dst_ip

Remove deprecated TCP command set_udp_port_lidar

Remove deprecated TCP command set_udp_port_imu

Remove deprecated TCP command get_lidar_mode

Remove deprecated TCP command set_lidar_mode

Remove deprecated TCP command get_config_file_path

Remove deprecated TCP command set_auto_start_flag

Remove deprecated TCP command get_auto_start_flag

Remove deprecated TCP command get_watchdog_status

“Changed”

Fixed azimuth_window parameter logic behavior. Notable changes:

[0,0] now outputs only a single column instead of all columns.

[1,2] results in sensor startup failure and an alert because there are no valid output columns.

117

Version v2.0.0

Date 2020-11-20

Description

“Added”

Add TCP command get_lidar_data_format.

Add in azimuth_window documentation.

Add in commands phase_lock_enable and phase_lock_offset and their documentation.

Add in verbose responses to parameter validation for TCP commands.

Add in command save_config_params which supersedes the deprecated command
write_config_txt, which will be deleted in future firmware.

Add in command get_config_param active in favor of the deprecated command
get_config_txt, which will be deleted in future firmware.

Add in new STANDBY and WARMUP statuses.

Add in parameter operating_mode in favor of the deprecated parameter auto_start_flag,
which will be deleted in future firmware.

Add in parameter udp_dest in favor of the deprecated parameter udp_ip, whichwill be deleted
in future firmware. This is to be consistent with the set_udp_dest_auto parameter and to
reflect that valid values can be hostnames in addition to ip addresses.

Add in HTTP GET api/v1/diagnostic/dump endpoint.

“Removed”

Remove deprecated TCP command set_udp_ip.

“Changed”

TCP command get_beam_intrinsics now returns: 1) lidar_origin_to_beam_origin_mm, dis-
tance between the lidar origin and the beam origin in millimeters; and 2) beam altitude
and azimuth angle arrays with padded zeros removed.

azimuth_window parameter now in terms of millidegrees and implemented CCW.

Deprecate api/v1/system/time/ HTTP API and its sub-APIs and replace with api/v1/time/

Version v1.13.0

Date

Description

“Added”

Add TCP command set_udp_dest_auto

TCP command get_alerts, includes more descriptive errors for troubleshooting

“Changes”

Packet Status now called Azimuth Data Block Status and is calculated differently

118

Packets with bad CRC are now dropped upstream and replaced with 0 padded packets to
ensure all packets are sent for each frame.

Return format of TCP command get_time_info updated

“Removed”

Removed reference to window_rejection_enable

Version v1.12.0

Date

Description

“Changes”

Corrected IMU axis directions to match Sensor Coordinate Frame.

Sensor Coordinate Frame section of sensor user manual for details on sensor coordinate
frame. This change inverts IMU X, Y, and Z axis relative to v1.11.0.

Version v1.11.0

Date 2019-03-25

Description

Add section on HTTP API commands.

TCP Port now hard-coded to 7501; port is no longer configurable.

Update to SYNC_PULSE_IN andMULTIPURPOSE_IO interface and configuration parameters (see de-
tails below).

Configuration parameters name changes:

pps_in_polarity changed to sync_pulse_in_polarity

pps_out_mode changed to multipurpose_io_mode

pps_out_polarity changed to sync_pulse_out_polarity

pps_rate changed to sync_pulse_out_frequency

pps_angle changed to sync_pulse_out_angle

pps_pulse_width changed to sync_pulse_out_pulse_width

New configuration parameters:

nmea_in_polarity

nmea_ignore_valid_char

nmea_baud_rate

nmea_leap_seconds

Configuration parameters option changes:

timestamp_mode - TIME_FROM_PPS changed to TIME_FROM_SYNC_PULSE_IN

119

multipurpose_io_mode (formerly pps_out_mode) - OUTPUT_PPS_OFF changed to OFF
- OUTPUT_FROM_PPS_IN_SYNCED changed to OUTPUT_FROM_SYNC_PULSE_IN - Removed OUT-
PUT_FROM_PPS_DEFINED_RATE - Added INPUT_NMEA_UART

TCP command changes:

Added commands:

get_time_info

Changed commands:

get_config_txt (returned dictionary keys match parameter changes)

Removed commands:

set_pps_in_polarity

get_pps_out_mode

set_pps_out_mode

get_timestamp_mode

set_timestamp_mode

Polarity changes: * sync_pulse_in_polarity was corrected to match parameter naming. *
sync_pulse_out_polarity was corrected to match parameter naming.

Version v1.10.0

Date 2018-12-11

Description

“Added”

Add get_alerts, pps_rate and pps_angle usage commands and expected output.

“Removed”

Remove all references of pulse_mode.

Remove TCP commands prior to v1.5.1.

Version v1.9.0

Date 2018-10-24

Description

“Changes”

No TCP command change.

Version v1.8.0

Date 2018-10-11

Description

get_sensor_info command gives INITIALIZING, UPDATING, RUNNING, ERROR and UNCONFIGURED status.

Version v1.7.0

120

Date 2018-09-05

Description

“Changes”

No TCP command change.

Version v1.6.0

Date 2018-08-16

Description

“Added”

Add get_sensor_info command gives prod_line info.

121

14 Troubleshooting

14.1 Sensor Homepage and HTTP Server

The sensor HTTP server page http://os-991900123456.local/ has information about the sensor sys-
tem information, sensor status, firmware and configuration. To learn more about Web UI and it’s use
to troubleshoot the sensor, Please see theWeb Interface portion of this user manual

Note: Please contact our Field Application Team and we can answer your questions and provide
guidance for achieving proper operations.

14.2 Networking

Many initial problems with the sensor are associated with it not properly being assigned an IP address
by a network switch or DHCP server on a client computer. Check your networking settings, the steps
in Connecting to Sensor, and that all wires are firmly connected if you suspect this problem. Note that
if the sensor is not connected via gigabit Ethernet, it will stop sending data and will output an error
code if it fails to achieve a 1000 Mb/s+ full duplex link. Please see the Networking Guide for detailed
guidance on network setup.

14.3 Get Alerts

To check for hardware errors, use the get_alerts TCP command.

If the watchdog is triggered, an alert code will be appended to the end of the response of the TCP
command get_alerts. The sensor has a limited-size buffer that will record the first few alerts detected
by the sensor.

The full list of possible alerts and error messages can be found in Alerts and Errors in the Appendix.

The alerts reported have the following format:

{
"category": "Category of the alert: e.g. OVERTEMP, UDP_TRANSMISSION",
"level": "Level of alert: e.g. NOTICE, WARNING, ERROR",
"realtime": "The timestamp of the alert in nanoseconds",
"active": "Whether the alert is active or not: <true/false>",
"msg": "A description of the alert",
"cursor": "The sequential number of the alert, starting from 0 counting up",
"id": "The hexadecimal identification code of the alert: e.g. 0x01000017",
"msg_verbose": "Any additional verbose description that the alert may present"

}

122

http://os-991900123456.local/
https://ouster.atlassian.net/servicedesk/customer/portal/8

Example showing active and logged forced temperature sensor failures occurring at timestamps
1569712873477772800, 1569712879991844096, 1569712884968876544 (nanoseconds). The first
logged error then resolves itself at 1569713260229536000. The example has been JSON formatted:

{
"active": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 2,
"id": "0x01000002",
"msg_verbose": ""

}
],
"next_cursor": 4,
"log": [

{
"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712873477772800",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 0,
"id": "0x01000000",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712879991844096",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 1,
"id": "0x01000001",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569712884968876544",
"active": true,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",

(continues on next page)

123

(continued from previous page)

"cursor":2 ,
"id": "0x01000002",
"msg_verbose": ""

},
{

"category": "OVERTEMP",
"level": "ERROR",
"realtime": "1569713260229536000",
"active": false,
"msg": "Unit internal temperature out of bounds; please ensure proper heat sinking.",
"cursor": 3,
"id": "0x01000000",
"msg_verbose": ""

}
]

}

Note: Please contact our Field Application Team and we can answer your questions and provide
guidance for achieving proper operations.

14.4 Using Latest Firmware

Upgrading to the latest firmware can often resolve issues found in earlier firmware. The latest firmware
is always found at Ouster Downloads. Our Support team is best suited to be able to help you if you are
running the latest firmware. Please refer to the Updating Firmware section to learn more on how to
update firmware.

124

https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.com/downloads/
https://ouster.atlassian.net/servicedesk/customer/portal/8

15 Alerts and Errors

The sensor provides alerts and error messages that are accessible through the Diagnostics tab on the
sensor homepage or via the get_alerts TCP command.

get_alerts returns a list of the active alerts and full log of the past alerts. The max log size is 32 so
you can get a log of up to 32 alerts.

15.1 Table of All Alerts and Errors

All possible alerts and errors that the sensor can provide are listed below. Where appropriate, the
message from the sensor aims to help the user diagnose and fix the issue themselves.

Table15.1: Alerts and Errors

ID Category Level Alert Message

0 UNKNOWN ERROR An unknown error has occurred; please
contact Ouster at https://ouster.com/
tech-support.

1000000 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000001 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000002 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000003 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000004 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000005 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000006 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000007 UNDERTEMP ERROR Unit internal temperature too low; please see
user guide for heat sinking requirements.

1000008 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

1000009 OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

continues on next page

125

https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

100000A OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

100000B OVERTEMP ERROR Unit internal temperature too high; please see
user guide for heat sinking requirements.

100000C INTERNAL_COMM WARNING Unit has experienced an internal COMMwarn-
ing.

100000D INTERNAL_COMM WARNING Unit has experienced an internal COMMwarn-
ing.

100000E SHOT_LIMITING NOTICE Temperature is high enough where shot lim-
iting may be engaged; please see user guide
for heat sinking requirements.

100000F SHOT_LIMITING WARNING Shot limiting mode is active. Laser power is
partially attenuated; please see user guide for
heat sinking requirements.

1000010 INTERNAL_FW ERROR Unit has experienced an internal er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000011 ETHER-
NET_LINK_BAD

WARNING Ethernet link bad, please check network
switch and harnessing can support 1 Gbps
Ethernet.

1000012 INTERNAL_COMM WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

1000013 INTERNAL_COMM WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

1000014 INTERNAL_COMM WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

1000015 UDP_TRANSMISSION WARNING Client machine announced it is not reachable
on the provided lidar data port; check that
udp_dest and udp_port_lidar configured on
the sensor matches client IP and port.

1000016 UDP_TRANSMISSION WARNING Could not send lidar data UDP packet to host;
check that network is up.

1000017 UDP_TRANSMISSION WARNING Received an unknown error when trying to
send lidar data UDP packet; closing socket.

continues on next page

126

https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

1000018 UDP_TRANSMISSION WARNING Client machine announced it is not reachable
on the provided not reachable on IMU data
port; check that udp_dest and udp_port_imu
configured on the sensor matches client IP
and port.

1000019 UDP_TRANSMISSION WARNING Could not send IMUUDPpacket to host; check
that network is up.

100001A UDP_TRANSMISSION WARNING Received an unknown error when trying to
send IMU UDP packet; closing socket.

100001B INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100001C INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100001D INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100001E INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100001F INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000020 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000021 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000022 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000023 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000024 STARTUP ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

continues on next page

127

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

1000025 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000026 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000027 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000028 STARTUP WARNING Unit has experienced an internal warning dur-
ing startup and is restarting.

1000029 STARTUP WARNING Unit has experienced an internal warning dur-
ing startup and is restarting.

100002A STARTUP WARNING Unit has experienced an internal warning dur-
ing startup and is restarting.

100002B STARTUP WARNING Unit has experienced an internal warning dur-
ing startup and is restarting.

100002C STARTUP WARNING Unit has experienced an internal warning dur-
ing startup and is restarting.

100002D STARTUP WARNING Unit has experienced an internal warning dur-
ing startup and is restarting.

100002E INPUT_VOLTAGE WARNING Input voltage is close to being too low. Raise
voltage immediately.

100002F INPUT_VOLTAGE ERROR Input voltage is too low. Unit shutting down.

1000030 INPUT_VOLTAGE WARNING Input voltage is close to being too high. Lower
voltage immediately.

1000031 INPUT_VOLTAGE ERROR Input voltage is too high. Unit shutting down.

1000032 UDP_CONNECT WARNING Couldn’t open lidar UDP socket; please
contact Ouster at https://ouster.com/
tech-support.

1000033 UDP_CONNECT WARNING Couldn’t resolve IP address; check network
and udp_dest.

1000034 UDP_CONNECT WARNING Invalid UDP port number; check network and
udp_port_lidar.

1000035 UDP_CONNECT WARNING Couldn’t reach destination client; verify ca-
bling and network address configuration.

continues on next page

128

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

1000036 UDP_CONNECT WARNING Couldn’t open imu UDP socket; please
contact Ouster at https://ouster.com/
tech-support.

1000037 UDP_CONNECT WARNING Couldn’t resolve IP address; check network
and udp_dest.

1000038 UDP_CONNECT WARNING Invalid UDP port number; check network and
udp_port_imu.

1000039 UDP_CONNECT WARNING Couldn’t reach destination client; verify ca-
bling and network address configuration.

100003A SHOT_LIMITING WARNING Shot limitingmode atmaximumand no longer
has thermal control authority.

100003B INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100003C INTERNAL_FAULT ERROR Internal fault detected; unit will restart to at-
tempt recovery.

100003D INTERNAL_FAULT ERROR Internal fault detected; unit will restart to at-
tempt recovery.

100003E INTERNAL_FAULT ERROR Internal fault detected; unit will restart to at-
tempt recovery.

100003F INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000040 INTERNAL_FAULT ERROR After restart attempts, unit did not recover.
Going to error state.

1000041 INTERNAL_COMM WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

1000042 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

1000043 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000044 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

continues on next page

129

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

1000045 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000046 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000047 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000048 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000049 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100004A STARTUP ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100004B STARTUP ERROR Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

100004C INTERNAL_FAULT ERROR Internal fault detected; unit going to error
stop state.

100004D INTERNAL_FAULT ERROR Internal fault detected; unit going to error
stop state.

100004E WARMUP_ISSUE WARNING Sensor warmup process is taking longer than
expected; please ensure sensor is thermally
constrained per requirements.

100004F WARMUP_ISSUE WARNING Sensor warmup process is taking longer than
expected; please ensure sensor is thermally
constrained per requirements.

1000050 MOTOR_CONTROL WARNING The phase lock offset error has exceeded the
threshold.

1000051 MOTOR_CONTROL ERROR The phase lock control failed to achieve a
lock multiple times; please contact Ouster at
https://ouster.com/tech-support.

1000052 CONFIG_INVALID ERROR Configuration value is invalid or out of bounds.

1000053 WARMUP_ISSUE ERROR Sensor warmup process has failed.

continues on next page

130

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

1000054 INTERNAL_FAULT NOTICE Unexpected hardware configuration de-
tected.

1000055 UDP_TRANSMISSION WARNING Unit has experienced a packet drop rate
above normal threshold. Please check that
the network has at least 1000 Mbps connec-
tion. Common causes of this notice may be
100 or 10 Mbps network connections.

1000056 INTERNAL_FAULT ERROR Internal fault detected; unit will restart to at-
tempt recovery.

1000057 OVERTEMP WARNING Warning: sensor temperature is too high; sen-
sor could have degraded range performance.

1000058 OVERTEMP ERROR Warning: sensor temperature is too high; unit
going to error stop state.

1000059 INTERNAL_FAULT WARNING Internal fault detected; unit will restart to at-
tempt recovery.

100005A INTERNAL_FAULT WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

100005B INTERNAL_FAULT WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

100005C INTERNAL_FAULT WARNING Unit has experienced an internal COMMwarn-
ing: some measurements may have been
skipped.

100005D INTERNAL_FAULT WARNING Internal fault detected; unit going to error
stop state.

100005E INTERNAL_FAULT WARNING Unit has experienced an overcurrent event;
unit will restart to attempt recovery.

100005F IO_CONNECTION WARNING Unit has stopped receiving SYNC_PULSE_IN
signals and is configured to expect them.
Check electrical inputs to sensor.

1000060 IO_CONNECTION WARNING Unit has stopped receiving NMEA messages
at the MULTIPURPOSE_IO port and is config-
ured to expect them. Check electrical inputs
to sensor.

1000061 INTERNAL_COMM ERROR Unit has experienced an internal COMM error;
please contact Ouster at https://ouster.com/
tech-support.

continues on next page

131

https://ouster.com/tech-support
https://ouster.com/tech-support

Table 15.1 – continued from previous page

ID Category Level Alert Message

1000062 UNEX-
PECTED_RUNNING_STATE_EXIT

WARNING Unit has experienced an internal er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000063 MO-
TOR_SPEED_BAD_WARNING

WARNING Unit is spinning outside of tolerant range;
please contact Ouster at https://ouster.com/
tech-support.

1000064 MOTOR_SPEED_BAD WARNING Unit failed to maintain target spin rate;
please contact Ouster at https://ouster.com/
tech-support.

1000065 UNEX-
PECTED_MOTOR_STATE_EXIT

WARNING Unit has experienced an internal er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000066 MO-
TOR_COIL_CHECK_FAILED

WARNING Unit has experienced a startup er-
ror; please contact Ouster at https:
//ouster.com/tech-support.

1000067 INTERNAL_FW ERROR Unit has experienced a startup er-
ror; Please contact Ouster at https:
//ouster.com/tech-support.

1000068 INTERNAL_FW ERROR Unit has experienced a startup er-
ror: Please contact Ouster at https:
//ouster.com/tech-support.

132

https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support
https://ouster.com/tech-support

16 Networking Guide

This guide will help you understand how to quickly get connected to your sensor to start doing great
things with it. When trying to connect to the sensor for the first time there are some basics that need
to be achieved for successful communication between the host machine and the sensor.

We need to ensure that the sensor receives an IP address from the host machine so that we can talk
to it. This can be achieved with a few different methods such as DHCP, link-local, static IP. We also
need to ensure that the sensor and the host machine are talking on the same subnet.

Once the sensor receives an IP address and is on the correct subnet we can talk to it using its host-
name, os-991234567890.local, where 991234567890 is the sensor serial number. The sensor serial number
can be found on a sticker affixed to the top of the sensor.

Based on the platform being used the user can refer to the following:

Windows

macOS

Linux

16.1 Networking Terminology

If some of this terminology is new to you don’t fret, we have defined some of it for you. Here is some
basic terminology that will help you digest the steps and be more familiar with networking in general.

IPv4 Address This is the address that can be used to communicate with devices on a network. The
format of an IPv4 address is a set of four octets, xxx.xxx.xxx.xxxwith xxx being in the range 0-255.
For example, your host machine Ethernet port may have an address of 192.0.2.1 and your sensor
may have an address of 192.0.2.130.

DHCP (Dynamic Host Configuration Protocol) Server This is a server that may run on your host
machine, switch, or router which will serve an IPv4 address to a device that is connected to it. It
will ensure that each device connected will have a unique IPv4 address on the network.

Link-local IPv4 Address These are the addresses that are self-assigned between the host machine
and a device connected to it in the absence of a DHCP server. They are only valid within the
network segment that the host is connected to. The addresses lie within the block 169.254.0.0/
16 (169.254.0.0 - 169.254.255.255).

Subnet Mask This defines which bits of the IPv4 address are the network prefix and which are the
host identifiers. See the table below for an example.

133

Binary Form Decimal-dot notation

IP address 11000000.00000000.00000010.10000010 192.0.2.130

Subnet mask 11111111.11111111.11111111.00000000 255.255.255.0

Network prefix 11000000.00000000.00000010.00000000 192.0.2.0

Host identifier 00000000.00000000.00000000.10000010 0.0.0.130

Note: Subnet mask can be abbreviated with the number of bits that apply to the network prefix.
E.g. /24 for 255.255.255.0 or /16 for 255.255.0.0.

Static IPv4 Address This is when you specify the addresses for the host machine and/or connected
device rather than letting the host machine self-assign or using a DHCP server. For example, you
may want to specify the host machine IPv4 address to be 192.0.2.100/24 and the sensor to be
192.0.2.200.

Hostname This is the more human readable name that comes with your sensor. The sensor’s host-
name is os-991234567890.local, where 991234567890 is the sensor serial number.

Note: The .local portion of the hostname denotes the local domain used in combination with
multicast DNS (mDNS). It is employed when using the sensor in a local network environment with
supporting operating system services. This means when the sensor is directly connected to the
host machine or if the host machine and sensor are on the same network connected through a
router or switch. If you are trying to connect to the sensor on another domain with a supporting
DHCP and DNS server configuration you should replace the .local with the domain the sensor
is on. For example, if the sensor is connected to a network with domain ouster-domain.com the
sensor will be reachable on os-991234567890.ouster-domain.com.

16.2 Windows

The following steps have been tested onWindows 10. The sensor’s hostname is os-991234567890.local,
where 991234567890 is the sensor serial number. The sensor serial number can be found on a sticker
affixed to the top of the sensor.

16.2.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the
sensor.

134

16.2.2 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps in Determining the IPv4
Address of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

16.2.3 Determining the IPv4 Address of the Sensor

1. Open a command prompt on the host machine by pressingWin+X and then A

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 [sensor_hostname]

Example

C:\WINDOWS\system32>ping -4 os-991234567890.local

Note: If this command hangs you may need to go back and configure your interface to
link-local in the section Connecting the Sensor

Response

Pinging os-991234567890.local [169.254.0.123] with 32 bytes of data:
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64
Reply from 169.254.0.123: bytes=32 time<1ms TTL=64

Ping statistics for 169.254.0.123:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor with mDNS Service Discovery

Command

dns-sd -G v4 [sensor_hostname]

Example

C:\WINDOW\system32>dns-sd -G v4 os-991234567890.local

135

Response

Timestamp A/R Flags if Hostname Address TTL
14:22:46.897 Add 2 6 os-991234567890.local 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

16.2.4 Determining the IPv4 Address of the Interface

1. Open a command prompt by pressingWin+X and then A

2. View the IPv4 address of your interfaces

Command

netsh interface ip show config

Example

C:\WINDOWS\system32>netsh interface ip show config

Response

Configuration for interface "Local Area Connection"
DHCP enabled: Yes
IP Address: 169.254.0.1
Subnet Prefix: 169.254.0.0/16 (mask 255.255.0.0)
InterfaceMetric: 25
DNS servers configured through DHCP: None
Register with which suffix: Primary only
WINS servers configured through DHCP: None

Configuration for interface "Loopback Pseudo-Interface 1"
DHCP enabled: No
IP Address: 127.0.0.1
Subnet Prefix: 127.0.0.0/8 (mask 255.0.0.0)
InterfaceMetric: 75
Statically Configured DNS Servers: None
Register with which suffix: Primary only
Statically Configured WINS Servers: None

In this example, your sensor is plugged into interface “Local Area Connection”

Your host IPv4 address will be on the line that starts with IP Address: In this case it is
169.254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local
to the sensor. This means that Windows self-assigned an IP address in the absence of a
DHCP server.

136

16.2.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP

Command

netsh interface ip set address ["Network Interface Name"] dhcp

Example with interface name "Local Area Connection"

C:\WINDOWS\system32>netsh interface ip set address "Local Area Connection" dhcp

Response blank

16.2.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static

Command

netsh interface ip set address name="Network Interface Name" static [IP address] [Subnet Mask]�
↪→[Gateway]

Example with interface name “Local Area Connection” and IPv4 address 192.0.2.1/24.

C:\WINDOWS\system32>netsh interface ip set address name="Local Area Connection" static�
↪→192.0.2.1/24

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response blank

16.2.7 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _roger._tcp. You can use service discovery tools such as Bonjour browser
(Windows) to find all sensors connected to the network.

Note: Click Bonjour to install Bonjour Browser.

Example using Bonjour Browser:

Step 1: User can download the Bonjour Browser

137

https://hobbyistsoftware.com/bonjourbrowser/
https://hobbyistsoftware.com/bonjourbrowser/

Figure 16.1: Downloading Application

Figure 16.2: Software Setup and Installation

138

Step 2: Sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _roger._tcp. Click on this to get all the information required.

Figure 16.3: _roger._tcp

139

16.3 macOS

The following steps have been tested on macOS 10.15.4. The sensor’s hostname is os-991234567890.
local, where 991234567890 is the sensor serial number. The sensor serial number can be found on a
sticker affixed to the top of the sensor.

16.3.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the
sensor.

16.3.2 The Sensor Homepage

1. Type os-991234567890.local in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps in Determining the IPv4
Address of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

16.3.3 Determining the IPv4 Address of the Sensor

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -c3 [sensor_hostname]

Example

Mac-Computer:~ username$ ping -c3 os-991234567890.local

Note: If this command hangs you may need to go back and configure your interface to
link-local in the section Connecting the Sensor

Response

PING os-991234567890.local (169.254.0.123): 56 data bytes
64 bytes from 169.254.0.123: icmp_seq=0 ttl=64 time=0.644 ms

140

64 bytes from 169.254.0.123: icmp_seq=1 ttl=64 time=0.617 ms
64 bytes from 169.254.0.123: icmp_seq=2 ttl=64 time=0.299 ms

--- os-991234567890.local ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.299/0.520/0.644/0.157 ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using dns-sd and the sensor hostname. Learn
more about this in Finding a Sensor

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 os-991234567890.local

Response

DATE: ---Tue 28 Apr 2020---
11:40:43.228 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
11:40:43.414 Add 2 18 os-991234567890.local. 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

16.3.4 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. en1 in the example below.

1. Open a Terminal window on the host machine by pressing CMD+SPACE and typing Terminal in
the search bar, then press enter.

2. View the IPv4 address of your interfaces

Command

ifconfig

Example

Mac-Computer:~ username$ ifconfig

Response

141

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
nd6 options=201<PERFORMNUD,DAD>

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 38:f9:d3:d6:33:8a
inet6 fe80::1c30:1246:93a2:9f68%en0 prefixlen 64 secured scopeid 0x7
inet 192.0.2.7 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active

en1: flags=8963<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 48:65:ee:1d:22:35
inet6 fe80::c27:1917:47ed:bcfe%en1 prefixlen 64 secured scopeid 0x12
inet 169.254.0.1 netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

In this example, your sensor is plugged into interface en1

Your host IPv4 address will be on the line that starts with inet: In this case it is 169.
254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local
to the sensor. This means that the macOS self-assigned an IP address in the absence of a
DHCP server.

16.3.5 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Set your interface to DHCP

Command

sudo ipconfig set [interface_name] DHCP

Example with interface name en1

Mac-Computer:~ username$ sudo ipconfig set en1 DHCP

Response blank, however you can verify the change has beenmadewith the ifconfig command.
The inet line will be blank if nothing is plugged in or shows the DHCP or link-local self-
assigned IPv4 address. E.g. 169.254.0.1

142

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet 169.254.0.1 netmask 0xffff0000 broadcast 169.254.255.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

16.3.6 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Set your interface to static

Command

sudo ipconfig set [interface_name] MANUAL [ip_address] [subnet_mask]

Example with interface name en1 and IPv4 address 192.0.2.1 and subnet mask 255.255.255.0.

Mac-Computer:~ username$ sudo ipconfig set en1 MANUAL 192.0.2.1 255.255.255.0

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response blank, however you can verify the change has beenmadewith the ifconfig command.
The inet line will show the static IPv4 address. e.g. 192.0.2.1.

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

options=6407<RXCSUM,TXCSUM,VLAN_MTU,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
ether 48:65:ee:1d:22:35
inet6 fe80::1c24:5e0a:2ea8:12e9%en1 prefixlen 64 secured scopeid 0x7
inet 192.0.2.1 netmask 0xffffff00 broadcast 192.0.2.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect (1000baseT <full-duplex>)
status: active

16.3.7 Finding a Sensor

With mDNS Service Discovery:

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as dns-sd (Windows/ma-
cOS) to find all sensors connected to the network.

1. Find all sensors and their associated service text on a network.

143

Command

dns-sd -Z [service type]

Example

Mac-Computer:~ username$ dns-sd -Z _roger._tcp

Response

Browsing for _roger._tcp
DATE: ---Thu 30 Apr 2020---
17:27:52.242 ...STARTING...

; To direct clients to browse a different domain, substitute that domain in
place of '@'
lb._dns-sd._udp PTR @

; In the list of services below, the SRV records will typically reference dot-local
Multicast DNS names.
; When transferring this zone file data to your unicast DNS server, you'll need to
replace those dot-local
; names with the correct fully-qualified (unicast) domain name of the target host
offering the service.

_roger._tcp PTR Ouster Sensor 991234567890._
↪→roger._tcp
Ouster Sensor 991234567890._roger._tcp SRV 0 0 7501 os-991234567890.local. ;
Replace with unicast FQDN of target host
Ouster Sensor 991234567890._roger._tcp TXT "pn=840-102145-B" "sn= 991234567890"
"fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= 991234567890"

2. Browse for the sensor IPv4 address using dns-sd and the sensor hostname.

Command

dns-sd -G v4 [sensor_hostname]

Example

Mac-Computer:~ username$ dns-sd -G v4 os-991234567890.local

Response

DATE: ---Thu 30 Apr 2020---
17:37:33.155 ...STARTING...
Timestamp A/R Flags if Hostname Address TTL
17:37:33.379 Add 2 7 os-991234567890.local. 169.254.0.123 120

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123

144

With Discovery App:

Step 1: User can download the Discovery DNS-SD

Figure 16.4: Downloading Application

Step 2: Using finder, the user can search for Discovery

Figure 16.5: Finding the Application

Step 3: Sensor announces its presence on the network using Multicast Domain Name Service (mDNS)
with a service type named _roger._tcp. Click on this to get all the information required.

145

https://apps.apple.com/us/app/discovery-dns-sd-browser/id1381004916?mt=12

Figure 16.6: _roger._tcp

16.4 Linux

The following steps have been tested on Ubuntu 18.04 & 20.04.4 LTS. The sensor’s hostname is os-
991234567890.local, where 991234567890 is the sensor serial number. The sensor serial number can be
found on a sticker affixed to the top of the sensor.

16.4.1 Connecting the Sensor

1. Connect the sensor to an available Ethernet port on your host machine or router.

2. The sensor will automatically obtain an IP address either through link-local or DHCP (if precon-
figured) depending on your network configuration.

3. If directly connecting to the host machine you may need to set your Ethernet interface to Link-
Local Only mode. This can be done via the command line or GUI. See instructions in Setting the
Interface to Link-Local Only

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the
sensor.

146

16.4.2 Setting the Interface to Link-Local Only

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method link-local ipv4.addresses ""

Note: To identify the name of your connection, please use the command: nmcli connection
show.

Example with interface name eth0 and IPv4 address "".

username@ubuntu:~$ nmcli con modify eth0 ipv4.method link-local ipv4.addresses ""

Response blank, however you can verify the change has been made with the ip addr command.
The inet line for the interface eth0 will show the link-local IPv4 address automatically ne-
gotiated once the sensor is reconnected to the interface. e.g. 169.254.0.1.

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen�
↪→1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 169.254.0.1/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Link-Local Onlymode using the graph-
ical user interface.

147

Note: It can take up to 60 seconds to obtain an IP address from the initial power-up of the sensor.

16.4.3 The Sensor Homepage

1. Type os-991234567890.local/ in the address bar of your browser to view the sensor homepage

Note: If you are unable to load the sensor homepage, follow the steps in Determining the IPv4
Address of the Sensor to verify your sensor is on the network and has a valid IPv4 address.

16.4.4 Determining the IPv4 Address of the Sensor

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. Use the ping command to determine the IPv4 address of the sensor

Command

ping -4 -c3 [sensor_hostname]

Example

username@ubuntu:~$ ping -4 -c3 os-991234567890.local

Note: If this command hangs you may need to go back and configure your interface to
link-local in the section Setting the Interface to Link-Local Only

148

mailto:username@ubuntu

Response

PING os-991234567890.local (169.254.0.123) 56(84) bytes of data.
64 bytes from os-991234567890.local (169.254.0.123): icmp_seq=1 ttl=64 time=1.56 ms
64 bytes from os-991234567890.local (169.254.0.123): icmp_seq=2 ttl=64 time=0.893 ms
64 bytes from os-991234567890.local (169.254.0.123): icmp_seq=3 ttl=64
time=0.568 ms

--- os-991234567890.local ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2025ms
rtt min/avg/max/mdev = 0.568/1.008/1.565/0.416 ms

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

3. You can also browse for the sensor IPv4 address using avahi-browse and the sensor service type,
which is _roger._tcp. Learn more about this in Finding a Sensor with mDNS Service Discovery

Command

avahi-browse -lrt [service type]

Example

username@ubuntu:~$ avahi-browse -lrt _roger._tcp

Response

+ eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local
+ eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local
= eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = [169.254.0.123]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= 991234567890"�

↪→"pn=840-102145-B"]

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123. If your
sensor IPv4 address is of the form 169.254.x.x it is connected via link-local.

149

16.4.5 Determining the IPv4 Address of the Interface

This will help you find the IPv4 address of the interface that you have plugged the sensor into. It is
helpful to know which interface you have plugged into, e.g. eth0 in the example below.

1. Open a Terminal window on the host machine by pressing Ctrl+Alt+T.

2. View the IPv4 address of your interfaces

Command

ip addr

Example

username@ubuntu:~$ ip addr

Response

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen�
↪→1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 169.254.0.1/16 brd 169.254.255.255 scope link noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group�
↪→default qlen 1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 192.0.2.232/24 brd 192.0.2.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever
4: gpd0: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN group default�
↪→qlen 500

link/none

In this example, your sensor is plugged into interface eth0

Your host IPv4 address will be on the line that starts with inet: In this case it is 169.
254.0.1

Note: If your interface IPv4 address is of the form 169.254.x.x, it is connected via link-local
to the sensor. This means that the Linux self-assigned an IP address in the absence of a
DHCP server.

150

16.4.6 Setting the Host Interface to DHCP

Use this to set your interface to automatically obtain an IP address via DHCP. This is useful for archi-
tectures that need to be more plug and play.

Note: It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method auto ipv4.addresses ""

Example with interface name eth0

username@ubuntu:~$ nmcli con modify eth0 ipv4.method auto ipv4.addresses ""

Response blank, however you can verify the change has been made with the ip addr command.
There will be no inet line for the interface eth0 until you plug in a cable to a device that has
a DHCP server to provide an IPv4 address the interface

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default�
↪→qlen 1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen�
↪→1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Automatic (DHCP) mode using the
graphical user interface.

151

16.4.7 Setting the Host Interface to Static IP

Use this to set your interface to be assigned a static IPv4 address. This is useful for controlling the IP
address that the sensor will be sending data to.

Note: It is recommended that you unplug the cable from the interface prior to making changes to the
interface.

Via Command Line

Command

nmcli con modify [interface_name] ipv4.method manual ipv4.addresses [ip_address]

Example with interface name eth0 and IPv4 address 192.0.2.1/24.

username@ubuntu:~$ nmcli con modify eth0 ipv4.method manual ipv4.addresses 192.0.2.1/24

Note: The /24 is shorthand for Subnet Mask = 255.255.255.0

Response blank, however you can verify the change has been made with the ip addr command.
The inet line for the interface eth0 will show the static IPv4 address. e.g. 192.0.2.1

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
(continues on next page)

152

(continued from previous page)

inet6 ::1/128 scope host
valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen�
↪→1000

link/ether 00:0c:29:2b:cc:48 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute eth0

valid_lft forever preferred_lft forever
inet6 fe80::be9f:d2a4:4451:3dfe/64 scope link noprefixroute

valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen�
↪→1000

link/ether 00:50:56:28:7a:8a brd ff:ff:ff:ff:ff:ff
inet 172.16.79.232/24 brd 172.16.79.255 scope global wlan0

valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe28:7a8a/64 scope link

valid_lft forever preferred_lft forever

Via GUI The image below illustrates how to set the interface to Manual (static)mode using the graph-
ical user interface.

16.4.8 Finding a Sensor with mDNS Service Discovery

The sensor announces its presence on the network usingMulticast Domain NameService (mDNS)with
a service type named _roger._tcp. You can use service discovery tools such as avahi-browse (Linux) to
find all sensors connected to the network.

1. Find all sensors and their associated service text which includes the sensor IPv4 address using
avahi-browse and the sensor service type _roger._tcp.

Command

153

avahi-browse -lrt [service type]

Example

username@ubuntu:~$ avahi-browse -lrt _roger._tcp

Response

+ eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local
+ eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local
= eth0 IPv6 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = [fe80::be0f:a7ff:fe00:1852]
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn=99201000067

8" "pn=840-102145-B"]
= eth0 IPv4 Ouster Sensor 991234567890 _roger._tcp local

hostname = [os-991234567890.local]
address = []
port = [7501]
txt = ["fw=ousteros-image-prod-aries-v2.0.0-20200417193957" "sn= 991234567890"�

↪→"pn=840-102145-B"]

Note: In this example, your sensor IPv4 address is determined to be 169.254.0.123.

154

17 Firmware Changelog

Version v2.3.1

Date 2022-06-03

Description

“Fixed”

Bug Fix in RNG19_RFL8_SIG16_NIR16 mode.

“Added”

Add support for new PN’s.

Version v2.3.0

Date 2022-04-15

Description

“Added”

Additional Channel Data Profiles (Single Return Profile, Low Data Rate Profile) were added
as part of the Configurable Data Packet Format, refer to Configurable Data Packet Format.

Add additional options for config parameter udp_profile_lidar, refer to Sensor Configura-
tions.

Add new TCP command get_telemetry, refer to Sensor Configuration and Calibration.

“Changed”

Reflectivity and Signal value is now from 1 to 255. 0 correspond to an invalid reflectivity
and Signal value (similar as Range).

“Fixed”

Fixed startup packet drop behavior (5b alert).

Version v2.2.1

Date 2022-02-17

Description

“Fixed”

Fixed point cloud detection on a subset of sensors

Version v2.2.0

155

Date 2021-12-18

Description

“Added”

Add support for Configurable Data Packet Format

Add support for Dual Returns mode

“Changed”

Update Sensor Web UI

Update TCP command get_lidar_data_format

Update TCP command get_sensor_info

Version v2.1.3

Date 2021-10-22

Description

“Added”

Added PN support

Version v2.1.2

Date 2021-07-16

Description

“Added”

Add support for minor hardware revisions

Version v2.1.1

Date 2021-06-21

Description

“Added”

Add support for Calibrated Reflectivity

Add Config UI to sensor web page (Beta)

Add signal multiplier modes to increase signal strength in the enabled azimuth window for
gen2 sensors only

Add alerts for motor speed

Add alerts for unexpected sensor state transition

Improve OS2 cold start to -20˚C

156

Improve OS2 signal strength by 16%

“Removed”

Delete TCP command set_data_dst_ip

Delete TCP command get_data_dst_ip

Delete TCP command set_udp_port_lidarAdded PN support for new turntable boards

Delete TCP command set_udp_port_imu

Delete TCP command get_lidar_mode

Delete TCP command set_lidar_mode

Delete TCP command get_config_file_path

Delete TCP command set_auto_start_flag

Delete TCP command get_auto_start_flag

Delete TCP command get_watchdog_status

“Changed”

Change the Reflectivity values in the packets from 16-bit to 8-bit

“Fixed”

Fixed phase locked motor control to handle out-of-bounds motor velocity

Slow time sync on initial boot with PTP

Fixed azimuth_window parameter logic behavior

157

18 Appendix

18.1 Features / Releases Support Table

Table 18.1: Features / Releases Support Table

Features Supported FW
Versions

Supported HW Revisions

Signal multiplier 2.1.0 and higher Rev C (PN: 840-102XXX-C) and
higher

Azimuth window masking 2.1.0 and higher Rev C (PN: 840-102XXX-C) and
higher

Calibrated reflectivity 2.1.0 and higher OS0 & OS1 Rev C (PN: 840-
102XXXC) and higher

Dual Returns 2.2.0 and
higher

Rev 06 (PN:840-102xxx-06)
and higher

Channel Data Profiles (Single Return, LowData
Rate) & Sensor Telemetry

2.3.0 and
higher

All Hardware revisions

Note: Channel Data Profiles (Single Return, Low Data Rate configurations along with Dual returns)
were added as part of the Configurable Data Packet Format in FW 2.3. Please note in order to enable
dual returns the user needs to have both a Rev 06 sensor or later and FW version 2.2 or later.

Note: Internal Temperature using Sensor Telemetry can be measured only on Rev 06 and later sen-
sors.

158

18.2 Lidar Packet Format Update

Starting in firmware v2.0.0, all sensors with the same number of channels have the same data struc-
ture and samemaximum data rate. Prior to v2.0.0, all sensors, regardless of their number of channels,
had the same data rate.

If you have either a Gen 1 OS1-16 or Gen 1 OS1-32, upon upgrading to firmware v2.0.0, you will see a
drop in data rate. Please refer to the diagram below for a visualization of lidar packet structure.

Prior to v2.0.0, all sensors, regardless of number of channels, had a fixed number of data blocks in
their lidar packets. In v2.0.0, the number of data blocks in a sensor’s Measurement Block is equal to
the number of channels it has. Customers with Gen 1 OS1-16 or Gen 1 OS1-32 will see a 75% and 50%
respective drop in data rate due to unused data blocks being omitted from the sensor output.

These customers will also see a change in the output of the TCP command get_beam_intrinsics. Pre-
viously, the beam_azimuth_angles and beam_altitude_angles output array was padded with zeros so that
they were always of length 64, regardless of the number of channels in that sensor. Now, the padded
zeros are dropped so that the lengths of both arrays are equal to number of channel in the sensor e.g.
all 32-channel sensors will have beam_azimuth_angles and beam_altitude_angles output arrays of length
32 on v2.0.0 and beyond.

The TCP command get_lidar_data_format can also be useful in interpreting the lidar data format struc-
ture:

columns_per_frame: Number of data columnsper frame. This can be512, 1024, or 2048, depending
upon the set lidar mode.

columns_per_packet: Number of Measurement Blocks contained in a single lidar packet. In v2.0.0
and earlier, this is 16.

pixel_shift_by_row: Offset in terms of pixel count. Can be used to destagger image. Varies by
lidar mode. Length of this array is equal to the number of channels of the sensor.

pixels_per_column: Number of channels of the sensor.

column_window: Indices of active columns of data in the sensor. These bounds will change when
a custom azimuth window is used.

Note: Please refer to Packet Size Calculation (Configurable) section to compare max data rates and
the Packet Size Calculation (LEGACY) table to compare lidar packet sizes of all sensors on firmware
v2.0.0.

159

18.3 Lidar format update appearing in v2.2.0

Anewdata packet format has been implemented in addition to the LEGACY one (still available). Please
refer to Configurable Data Packet Format section for more details.

18.4 PTP Profiles Guide

This guide provides instructions on setting the Precision Time Protocol (PTP) profile of the Ouster
sensor. The profile of the Ouster sensor and your master clock must match for time synchronization
to be possible.

18.4.1 PTP Profiles

There are several PTP profiles that are commonly used. The supported profiles on the Ouster sensor
are listed below:

default - The IEEE 1588 Default PTP profile addresses many common applications. Most PTP
capable devices support the Default profile.

gptp - Generalized PTP (gPTP) is the common name for the IEEE standard 802.1AS-2011 which
improves the interoperability of PTP by simplifying the supported options. The gPTP profile is
useful when using the Ouster sensor with gPTP compatible hardware such as an Audio Visual
Bridge (AVB), e.g. the MOTU AVB.

automotive-slave - The Automotive Slave PTP profile is commonly used in automotive applica-
tions. The primary differences from other profiles are that the Best Master Clock Algorithm
(BMCA) is disabled, the slave device inhibits announce messages, and the time convergence
controller is approximately 8 times faster than the Default profile.

18.4.2 PTP HTTP API

The PTP profile of the sensor is changed using an HTTP PUT request. This can be done using sev-
eral different tools such as httpie, curl, Advanced REST Client, etc. The full API is available in GET
/api/v1/time/ptp/profile.

The request URL is: http://<sensor_hostname>/api/v1/time/ptp/profile/

Valid values are (““, are included):

“default”

“gptp”

“automotive-slave”

Note: Changing the PTP profile does not require reinitialization or writing the configuration text file to
be persistent. It is persistent as soon a valid PUT request is executed and a valid response is received.

160

https://motu.com/products/avb/avb-switch
https://httpie.org/
https://curl.haxx.se/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US
http:/

18.4.3 Enabling the PTP profiles

Below are some examples using popular command-line tools.

18.4.4 Example using cURL

In this example we are setting the PTP profile of the Ouster sensor to "gptp" using the cURL command
line tool.

Command

curl -X PUT -H "Content-Type: application/json" -d '"gptp"' http://<sensor_hostname>/api/v1/time/ptp/
↪→profile/

Response

"gptp"%

18.4.5 Example using Httpie

In this example we are setting the PTP profile of the Ouster sensor to "default" using the Httpie com-
mand line tool.

Command

http PUT http://<sensor_hostname>/api/v1/time/ptp/profile <<< '"default"'

Response

"default"%

18.4.6 Sync Verification

Please see the Sensor PTP Sync Verification section for details on how to verify the sensor is synchro-
nized.

161

18.5 PTP Quickstart Guide

There are many configurations for a PTP network, this quick start guide aims to cover the basics by
using Ubuntu 18.04 as an example. It provides configuration settings for a commercial PTP grand-
master clock and also provides directions on setting up a Linux computer (Ubuntu 18.04) to function
as a PTP grandmaster.

The linuxptp project provides a suite of PTP tools that can be used to serve as a PTP master clock for
a local network of sensors.

18.5.1 Assumptions

Command line Linux knowledge (e.g., package management, command line familiarity, etc.).

Ethernet interfaces that support hardware timestamping.

Ubuntu 18.04 is assumed for this tutorial, but any modern distribution should suffice.

Knowledge of systemd service configuration and management.

Familiarity with Linux permissions.

18.5.2 Physical Network Setup

Ensure the Ouster sensor is connected to the PTP master clock with at most one network switch.
Ideally the sensor should be connected directly to the PTP grandmaster. Alternatively, a simple layer-2
gigabit Ethernet switch will suffice. Multiple switches are not recommended and will add unnecessary
jitter.

18.5.3 Third Party Grandmaster Clock

A dedicated grandmaster clock should be used for the highest absolute accuracy often with a GPS
receiver.

It must be configured with the following parameters which match the linuxptp client defaults:

Transport: UDP IPv4

Delay Mechanism: E2E

Sync Mode: Two-Step

Announce Interval: 1 - sent every 2 seconds

Sync Interval: 0 - sent every 1 second

Delay Request Interval: 0 - sent every 1 second

For more settings, review the port_data_set field returned from the sensor’s HTTP /time/ptp interface.

162

http://linuxptp.sourceforge.net/

18.5.4 Linux PTP Grandmaster Clock

An alternative to an external grandmaster PTP clock is to run a local Linux PTPmaster clock if accuracy
allows. This is often implemented on a vehicle computer that interfaces directly with the lidar sensors.

This section outlines how to configure a master clock.

18.5.5 Example Network Setup

This section assumes the following network setup as it has elements of a local master clock and the
option for an upstream PTP time source.

+-------------------------------------+
| Ubuntu 18.04 System |
| * 2x Intel i210 Ethernet Interfaces |
| * Linux PTP service |
| |
| eno1 eno2 |
+-------+---------------------+-------+

| |
+-------+-------+ +--------+------+
| Trimble GM100 | | + +
GPS -> PTP		Ouster OS1	
grandmaster			
(optional)			
+---------------+ +---------------- |

+--------------- +

The focus is on configuring the Linux PTP service to serve a common clock to all the downstream
Ouster OS1 sensors using the Linux system time from the Ubuntu host machine.

Optionally, a grandmaster clock can be added to discipline the system time of the Linux host.

18.5.6 Installing Necessary Packages

Several packages are needed for PTP functionality and verification:

linuxptp - Linux PTP package with the following components:

ptp4l daemon to manage hardware and participate as a PTP node

phc2sys to synchronize the Ethernet controller’s hardware clock to the Linux system clock
or shared memory region

pmc to query the PTP nodes on the network.

chrony - A NTP and PTP time synchronization daemon. It can be configured to listen to both NTP
time sources via the Internet and a PTP master clock such as one provided by a GPS with PTP
support. This will validate the time configuration makes sense given multiple time sources.

ethtool - A tool to query the hardware and driver capabilities of a given Ethernet interface.

163

$ sudo apt update
...
Reading package lists... Done
Building dependency tree
Reading state information... Done

$ sudo apt install linuxptp chrony ethtool
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:

chrony ethtool linuxptp
0 upgraded, 3 newly installed, 0 to remove and 29 not upgraded.
Need to get 430 kB of archives.
After this operation, 1,319 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu bionic/main amd64 ethtool amd64 1:4.15-0ubuntu1 [114 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu bionic/universe amd64 linuxptp amd64 1.8-1 [112 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 chrony amd64 3.2-4ubuntu4.2 [203 kB]
Fetched 430 kB in 1s (495 kB/s)
Selecting previously unselected package ethtool.
(Reading database ... 117835 files and directories currently installed.)
Preparing to unpack .../ethtool_1%3a4.15-0ubuntu1_amd64.deb ...
Unpacking ethtool (1:4.15-0ubuntu1) ...
Selecting previously unselected package linuxptp.
Preparing to unpack .../linuxptp_1.8-1_amd64.deb ...
Unpacking linuxptp (1.8-1) ...
Selecting previously unselected package chrony.
Preparing to unpack .../chrony_3.2-4ubuntu4.2_amd64.deb ...
Unpacking chrony (3.2-4ubuntu4.2) ...
Setting up linuxptp (1.8-1) ...
Processing triggers for ureadahead (0.100.0-20) ...
ureadahead will be reprofiled on next reboot
Setting up chrony (3.2-4ubuntu4.2) ...
Processing triggers for systemd (237-3ubuntu10.13) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Setting up ethtool (1:4.15-0ubuntu1) ...

18.5.7 Ethernet Hardware Timestamp Verification

Identify the Ethernet interface to be used on the client (Linux) machine, e.g., eno1. Run the eth-
tool utility and query this network interface for supported capabilities.

Output of ethtool -T for a functioning Intel i210 Ethernet interface:

$ sudo ethtool -T eno1
Time stamping parameters for eno1:
Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)

(continues on next page)

164

https://www.kernel.org/pub/software/network/ethtool/
https://www.kernel.org/pub/software/network/ethtool/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/i210-ethernet-controller-datasheet.pdf

(continued from previous page)

hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

18.5.8 Configurations

Configuring ``ptp4l`` for Multiple Ports

On a Linux systemwith multiple Ethernet ports (i.e. Intel i210) ptp4l needs to be configured to support
all of them.

boundary_clock_jbod 1
[eno1]
[eno2]

Note: Add the above required modification at the end of the existing file. Deleting or editing the
default settings section of the ptp41.conf file will result in an error.

The default systemd service file for Ubuntu 18.04 attempts to use the eth0 address on the command
line. Override systemd service file so that the configuration file is used instead of hard coded in the
service file.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/ptp4l.service.d

Create a file at /etc/systemd/system/ptp4l.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Restart the ptp4l service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart ptp4l
$ sudo systemctl status ptp4l
* ptp4l.service - Precision Time Protocol (PTP) service

Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/ptp4l.service.d

└─override.conf
Active: active (running) since Wed 2019-03-13 14:38:57 PDT; 3s ago
Docs: man:ptp4l

(continues on next page)

165

(continued from previous page)

Main PID: 25783 (ptp4l)
Tasks: 1 (limit: 4915)

CGroup: /system.slice/ptp4l.service
└─25783 /usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf

Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 1: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] driver changed our HWTSTAMP options
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] tx_type 1 not 1
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] rx_filter 1 not 12
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.756] port 2: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 0: INITIALIZING to LISTENING on INITIALIZE
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 1: link up
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: link down
Mar 13 14:38:57 leadlizard ptp4l[25783]: [590188.757] port 2: LISTENING to FAULTY on FAULT_DETECTED (FT_
↪→UNSPECIFIED)
Mar 13 14:38:58 leadlizard ptp4l[25783]: [590189.360] port 1: new foreign master 001747.fffe.700038-1

The above systemctl status ptp4l console output shows systemd correctly reading the override file
created earlier before starting several seconds after the restart command.

The log output shows that a grandmaster clock has been discovered on port 1 (eno1) and port 2 (eno2) is
currently disconnected and in the faulty state as expected. In the test network a Trimble Thunderbolt
PTP GM100 Grandmaster Clock is attached on eno1.

Logs can be monitored (i.e. followed) like so:

$ journalctl -f -u ptp4l
-- Logs begin at Fri 2018-11-30 06:40:50 PST. --
Mar 13 14:51:37 leadlizard ptp4l[25783]: [590948.224] master offset -17 s2 freq -25963 path delay 14183
Mar 13 14:51:38 leadlizard ptp4l[25783]: [590949.224] master offset -13 s2 freq -25964 path delay 14183
Mar 13 14:51:39 leadlizard ptp4l[25783]: [590950.225] master offset 35 s2 freq -25920 path delay 14192
Mar 13 14:51:40 leadlizard ptp4l[25783]: [590951.225] master offset -59 s2 freq -26003 path delay 14201
Mar 13 14:51:41 leadlizard ptp4l[25783]: [590952.225] master offset -24 s2 freq -25986 path delay 14201
Mar 13 14:51:42 leadlizard ptp4l[25783]: [590953.225] master offset -39 s2 freq -26008 path delay 14201
Mar 13 14:51:43 leadlizard ptp4l[25783]: [590954.225] master offset 53 s2 freq -25928 path delay 14201
Mar 13 14:51:44 leadlizard ptp4l[25783]: [590955.226] master offset -85 s2 freq -26050 path delay 14207
Mar 13 14:51:45 leadlizard ptp4l[25783]: [590956.226] master offset 127 s2 freq -25863 path delay 14207
Mar 13 14:51:46 leadlizard ptp4l[25783]: [590957.226] master offset 9 s2 freq -25943 path delay 14208
Mar 13 14:51:47 leadlizard ptp4l[25783]: [590958.226] master offset -23 s2 freq -25973 path delay 14208
Mar 13 14:51:48 leadlizard ptp4l[25783]: [590959.226] master offset -61 s2 freq -26018 path delay 14190
Mar 13 14:51:49 leadlizard ptp4l[25783]: [590960.226] master offset 69 s2 freq -25906 path delay 14190
Mar 13 14:51:50 leadlizard ptp4l[25783]: [590961.226] master offset -73 s2 freq -26027 path delay 14202
Mar 13 14:51:51 leadlizard ptp4l[25783]: [590962.226] master offset 19 s2 freq -25957 path delay 14202
Mar 13 14:51:52 leadlizard ptp4l[25783]: [590963.226] master offset 147 s2 freq -25823 path delay 14202
...

Configuring ptp4l as a Local Master Clock

The IEEE-1588BestMasterClockAlgorithm (BMCA) will select a grandmaster clock based on anumber
ofmasters. Inmost networks there should be only a singlemaster. In the example network the Ubuntu
machine will be configured with a non-default clockClass so its operation qualifies it to win the BMCA.

Replace the default value with a lower clock class (higher priority) and restart linuxptp. Edit /etc/

166

linuxptp/ptp4l.conf and comment out the default clockClass value and insert a line setting it 128.

#clockClass 248
clockClass 128

Restart ptp4l so the configuration change takes effect.

$ sudo systemctl restart ptp4l

This will configure ptp4l to advertise a master clock on eno2 as a clock that will win the BMCA for an
Ouster OS1 sensor.

However, the ptp4l service is only advertising the Ethernet controller’s PTP hardware clock, not the
Linux system time as is often expected.

Configuring ``phc2sys`` to Synchronize the System Time to the PTP Clock

To synchronize the Linux system time to the PTP hardware clock the phc2sys utility needs to be run.
The following configuration will tell phc2sys to take the Linux CLOCK_REALTIME and write that time to the
PTP hardware clock in the Ethernet controller for eno2. These interfaces are then connected to PTP
slaves such as Ouster OS1 sensors.

Create a systemd drop-in directory to override the system service file:

$ sudo mkdir -p /etc/systemd/system/phc2sys.service.d

Create a file at /etc/systemd/system/phc2sys.service.d/override.conf with the following contents:

[Service]
ExecStart=
ExecStart=/usr/sbin/phc2sys -w -s CLOCK_REALTIME -c eno2

Note: If multiple interfaces need to be synchronized from CLOCK_REALTIME then multiple instances of
the phc2sys service need to be run as it only accepts a single slave (i.e. -c) argument.

Restart the phc2sys service so the change takes effect:

$ sudo systemctl daemon-reload
$ sudo systemctl restart phc2sys
$ sudo systemctl status phc2sys

Configuring Chrony to Set System Clock Using PTP

An upstream PTP grandmaster clock (e.g., a GPS disciplined PTP clock) can be used to set the system
time if precise absolute time is needed for sensor data.

Chrony is a Linux time service that can read fromNTP and PTP and set the Linux system time using the
most accurate source available. With a properly functioning PTP grandmaster the PTP time source
will be selected and the error from the public time servers can be reviewed.

The following phc2shm service will synchronize the time from eno1 (where the external grandmaster

167

is attached) to the system clock.

Create a file named /etc/systemd/system/phc2shm.service with the following contents:

/etc/systemd/system/phc2shm.service
[Unit]
Description=Synchronize PTP hardware clock (PHC) to NTP SHM
Documentation=man:phc2sys
After=ntpdate.service
Requires=ptp4l.service
After=ptp4l.service

[Service]
Type=simple
ExecStart=/usr/sbin/phc2sys -s eno1 -E ntpshm -w

[Install]
WantedBy=multi-user.target

Then start the newly created service and check that it started.

$ sudo systemctl start phc2shm
$ sudo systemctl status phc2shm

Add the PTP time source to the chrony configuration which will read the shared memory region man-
aged by the phc2shm service created above.

Append the following to the /etc/chrony/chrony.conf file:

refclock SHM 0 poll 1 refid ptp

Restart chrony so the updated configuration file takes effect:

$ sudo systemctl restart chrony

After waiting a minute for the clock to synchronize, review the chrony client timing accuracy:

$ chronyc tracking
Reference ID : 70747000 (ptp)
Stratum : 1
Ref time (UTC) : Thu Mar 14 02:22:58 2019
System time : 0.000000298 seconds slow of NTP time
Last offset : -0.000000579 seconds
RMS offset : 0.001319735 seconds
Frequency : 0.502 ppm slow
Residual freq : -0.028 ppm
Skew : 0.577 ppm
Root delay : 0.000000001 seconds
Root dispersion : 0.000003448 seconds
Update interval : 2.0 seconds
Leap status : Normal

$ chronyc sources -v
210 Number of sources = 9

(continues on next page)

168

(continued from previous page)

.-- Source mode '^' = server, '=' = peer, '#' = local clock.
/ .- Source state '*' = current synced, '+' = combined , '-' = not combined,

| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
|| .- xxxx [yyyy] +/- zzzz
|| Reachability register (octal) -. | xxxx = adjusted offset,
|| Log2(Polling interval) --. | | yyyy = measured offset,
|| \ | | zzzz = estimated error.
|| | | \
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
#* ptp 0 1 377 1 +27ns[+34ns] +/- 932ns
^- chilipepper.canonical.com 2 6 377 61 -482us[-482us] +/- 99ms
^- pugot.canonical.com 2 6 377 62 -498us[-498us] +/- 112ms
^- golem.canonical.com 2 6 337 59 -467us[-468us] +/- 95ms
^- alphyn.canonical.com 2 6 377 58 +957us[+957us] +/- 95ms
^- legacy13.chi1.ntfo.org 3 6 377 62 -10ms[-10ms] +/- 178ms
^- tesla.selinc.com 2 6 377 128 +429us[+514us] +/- 42ms
^- io.crash-override.org 2 6 377 59 +441us[+441us] +/- 58ms
^- hadb2.smatwebdesign.com 3 6 377 58 +1364us[+1364us] +/- 99ms

Note that the Reference IDmatches the ptp reference ID from the chrony.conf file and that the sources
output shows the ptp reference ID as selected (signified by the * state in the second column). Addi-
tionally, the NTP time sources show a small relative error to the high accuracy PTP time source.

In this case the PTP grandmaster is properly functioning.

If this error is large, chrony will select the NTP time sources and mark the PTP time source as invalid.
This typically signifies that something is mis-configured with the PTP grandmaster upstream of this
device or the linuxptp configuration.

18.5.9 Verifying Operation

If the PTP grandmaster was just set up and configured, it’s recommended to power cycle the sensor.
The sensor will then jump to the correct time instead of slowly easing in the time adjustment which
will take time if the grandmaster initially set the sensor to the wrong time.

18.6 Sensor PTP Sync Verification

The sensor can be queried for the state of its local PTP service through the GET /api/v1/time/ptp re-
quest.

JSON response fields to check:

parent_data_set.grandmaster_identity should list the identity of the local grandmaster

port_data_set.port_state should be SLAVE

time_status_np.gm_present should be true

169

time_status_np.master_offset which is given in nanoseconds, should be less than 250000. This
equates to 250 microseconds.

PTP Example JSON Response

{
"profile": "default",
"parent_data_set":
{

"grandmaster_identity": "001747.fffe.700038",
"parent_port_identity": "ac1f6b.fffe.1db84e-2",
"parent_stats": 0,
"gm_clock_class": 6,
"observed_parent_clock_phase_change_rate": 2147483647,
"gm_clock_accuracy": 33,
"gm_offset_scaled_log_variance": 65535,
"grandmaster_priority1": 128,
"grandmaster_priority2": 128,
"observed_parent_offset_scaled_log_variance": 65535

},
"current_data_set":
{

"steps_removed": 1,
"offset_from_master": 61355,
"mean_path_delay": 117977.0

},
"port_data_set":
{

"port_state": "SLAVE",
"peer_mean_path_delay": 0,
"log_min_delay_req_interval": 0,
"port_identity": "bc0fa7.fffe.c48254-1",
"log_sync_interval": 0,
"log_announce_interval": 1,
"delay_mechanism": 1,
"log_min_pdelay_req_interval": 0,
"announce_receipt_timeout": 3,
"version_number": 2

},
"time_status_np":
{

"gm_time_base_indicator": 0,
"gm_identity": "001747.fffe.700038",
"cumulative_scaled_rate_offset": 0,
"scaled_last_gm_phase_change": 0,
"ingress_time": 0,
"master_offset": 61355,
"last_gm_phase_change": "0x0000'0000000000000000.0000",
"gm_present": true

},
"time_properties_data_set":
{

"frequency_traceable": 0,
"leap61": 0,
"time_traceable": 0,

(continues on next page)

170

(continued from previous page)

"current_utc_offset": 37,
"leap59": 0,
"current_utc_offset_valid": 0,
"time_source": 160,
"ptp_timescale": 1

}
}

18.6.1 LinuxPTP PMC Tool

The sensor will respond to PTP management messages. The linuxptp pmc (see man pmc) utility can be
used to query all PTP devices on the local network.

On the Linux host for the pmc utility to communicate with then run the following command:

$ sudo pmc 'get PARENT_DATA_SET' 'get CURRENT_DATA_SET' 'get PORT_DATA_SET' 'get TIME_STATUS_NP' -i eno2
sending: GET PARENT_DATA_SET
sending: GET CURRENT_DATA_SET
sending: GET PORT_DATA_SET
sending: GET TIME_STATUS_NP

bc0fa7.fffe.c48254-1 seq 0 RESPONSE MANAGEMENT PARENT_DATA_SET
parentPortIdentity ac1f6b.fffe.1db84e-2
parentStats 0
observedParentOffsetScaledLogVariance 0xffff
observedParentClockPhaseChangeRate 0x7fffffff
grandmasterPriority1 128
gm.ClockClass 6
gm.ClockAccuracy 0x21
gm.OffsetScaledLogVariance 0x4e5d
grandmasterPriority2 128
grandmasterIdentity 001747.fffe.700038

bc0fa7.fffe.c48254-1 seq 1 RESPONSE MANAGEMENT CURRENT_DATA_SET
stepsRemoved 2
offsetFromMaster 61355.0
meanPathDelay 117977.0

bc0fa7.fffe.c48254-1 seq 2 RESPONSE MANAGEMENT PORT_DATA_SET
portIdentity bc0fa7.fffe.c48254-1
portState SLAVE
logMinDelayReqInterval 0
peerMeanPathDelay 0
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval 0
delayMechanism 1
logMinPdelayReqInterval 0
versionNumber 2

bc0fa7.fffe.c48254-1 seq 3 RESPONSE MANAGEMENT TIME_STATUS_NP
master_offset 61355
ingress_time 0
cumulativeScaledRateOffset +0.000000000
scaledLastGmPhaseChange 0

(continues on next page)

171

(continued from previous page)

gmTimeBaseIndicator 0
lastGmPhaseChange 0x0000'0000000000000000.0000
gmPresent true
gmIdentity 001747.fffe.700038

18.6.2 Tested Grandmaster Clocks

Trimble Thunderbolt PTP GM100 Grandmaster Clock

Firmware version: 20161111-0.1.4.0, November 11 2016 15:58:25

PTP configuration:

> get ptp eth0
Enabled : Yes
Clock ID : 001747.fffe.700038-1
Profile : 1588

Domain number : 0
Transport protocol : IPV4

IP Mode : Multicast
Delay Mechanism : E2E

Sync Mode : Two-Step
Clock Class : 6
Priority 1 : 128
Priority 2 : 128

Multicast TTL : 0
Sync interval : 0

Del Req interval : 0
Ann. interval : 1

Ann. receipt timeout : 3

Ubuntu 18.04 + Linux PTP as a master clock

Intel i210 Ethernet interface

PCI hardware identifiers: 8086:1533 (rev 03)

Ubuntu 18.04 kernel package: linux-image-4.18.0-16-generic

Ubuntu 18.04 linuxptp package: linuxptp-1.8-1

172

18.7 Analyzing Linux Networking Issues

Note: Users are recommended to follow this section only in the case of intermittent packet drops or
packet reordering. Pleasemake sure to double check udp_dest settings at the beginning of this section,
as the information provided is not useful if users are getting zero data.

In case the users are getting zero data and are unable to resolve the issue please contact our Field
Application Team.

This section captures tools and procedures to troubleshoot networking issues for a system consisting
of a PC/Workstation L2 Switch and one or more Ouster Sensors. Though examples use the Linux
Operating System as a model, the material is equally relevant to debugging issues in the Windows
environment. Where possible Windows command-line and UI analogs will be discussed in passing.

Debugging the Workstation Data Path

The workstation maintains a set of statistics associated with each layer in the network stack that can
be used to diagnose packet loss. The correct way to approach a network stack problem is to start with
the lowest layer in the stack first, examine the statistics for errors, and work your way up to the highest
layer. The reason that we start with the lowest layer is that issues in the lowest layer can cause issues
in other parts of the data-path.

18.7.1 Link Layer Statistics and Configuration

ethtool

In Linux, ethtool is used to query theNIC for statistics aswell as view and change theNIC configuration.
Linux also offersmore genericmechanisms to do this bywriting/reading keys in the kernel file-system.
Ethtool is often the tool that is widely use to debug system, and is generally themost complete system
for configuration and debug. Ethtool is a double edged-sword, because ethtool is vendor-centric the
output of its commands and range of configuration options will be slightly different depending on
which NIC is used.

Line Interface Statistics

The most useful starting point when debugging the link-layer is to examine the line-interface statics,
these are queried with ethtool -S <ethX> where ethX is the identifier of the NIC as listed by ifconfig, if
the device has multiple NICs and you are uncertain which NIC is receiving the traffic, run some traffic
and monitor the stats reported by ifconfig.

Note: The output of ethtool -S <ethX> is 100% NIC vendor specific and will be quite different de-
pending on NIC vendor used in your system.

Example: Output of ethtool -S:

NIC statistics:
rx_packets: 0

(continues on next page)

173

https://ouster.atlassian.net/servicedesk/customer/portal/8
https://ouster.atlassian.net/servicedesk/customer/portal/8

(continued from previous page)

tx_packets: 0
rx_bytes: 0
tx_bytes: 0
rx_broadcast: 0
tx_broadcast: 0
rx_multicast: 0
tx_multicast: 0
rx_errors: 0
tx_errors: 0
tx_dropped: 0
multicast: 0
collisions: 0
rx_length_errors: 0
rx_over_errors: 0
rx_crc_errors: 0
rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: 0
tx_deferred_ok: 0
tx_single_coll_ok: 0
tx_multi_coll_ok: 0
tx_timeout_count: 52
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0
tx_tcp_seg_failed: 0
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0
rx_csum_offload_good: 0
rx_csum_offload_errors: 0
rx_header_split: 0
alloc_rx_buff_failed: 0
tx_smbus: 0
rx_smbus: 0
dropped_smbus: 0
rx_dma_failed: 0
tx_dma_failed: 0
rx_hwtstamp_cleared: 0
uncorr_ecc_errors: 0
corr_ecc_errors: 0
tx_hwtstamp_timeouts: 0
tx_hwtstamp_skipped: 0

174

MAC Errors

Users are mainly interested in the path where the sensor is transmitting to the workstation, focusing
on the “rx” (receive) statistics. Generally, anything that is labeled as rx.*error on this NIC constitutes
a stats that might be helpful in diagnosing the problem.

Based on theNIC, these “error” statistics are primarily associatedwith problems identified by theMAC.
Such problems are generally indicative of an L1 problem (though they could also indicate a problem
with the link-partner’s MAC), such as a loose connector, faulty transceiver, or an out-of-spec cable.

Internal System Errors

User might come across stats like rx_dma_failed and rx_no_buffer_count that do not have an “error”
postfix but constitute very real errors. These are indicative of failures in the hand-off between the NIC
driver.

Solving MAC Errors

If users encounter MAC errors this most likely points to a cabling issue, so the first step would be to
replace the cable. If the errors persist, the next step would be to try to test against a different node.
One can use the “iPerf” or “iPerf3” utility (discussed below) to validate that the workstation against
another workstation computer. A final step would be to swap out the sensor.

Solving Internal System Errors

These errors are often the most difficult to understand. It can be quite surprising that the MAC is
receiving everything and traffic is still being dropped. The root cause is generally that the processor
cannot handle the peak rate. Though the average load may be only a few hundred megabits, the real
situation is that all traffic received by the NIC arrives at line rate – for a 10G NIC this means that many
frames may be received back-to-back at the line rate of the NIC.

Just how many frames arrive depends on the behavior of the sensors. Ouster sensor attempts to
transmit the entire LIDAR frame all at once. Assuming a 40K (on thewire) LiDAR frame and 10 sensors,
the worst case load will be 40K x 10 = 400K at 10G (since the peak transmit rate of each sensor is 1G x
10 = 10G.) 400K is a lot of 10G data to process all at once, and without hardware buffering things will
certainly fail.

The NIC maintains a hardware ring-buffer or on advanced hardware, potentially multiple ring-buffers.
The entries in the ring-buffer are pointers into kernel packet-buffer structures. This mechanism en-
ables the NIC to efficiently deliver packets to the kernel at line rate. For our specific use-case the
default size of this ring-buffer may be too small.

To update this value user can use ethtool:

ethtool -g <ethX> will display the current setting and device limits

ethtool -G <ethX> rx <value> is used to update the setting

Example: Using a laptop/sytem, ring-buffer has enough buffer for 256 entries by default:

ethtool -g enp0s31f6
Ring parameters for enp0s31f6:
Pre-set maximums:
RX: 4096

(continues on next page)

175

(continued from previous page)

RX Mini: 0
RX Jumbo: 0
TX: 4096
Current hardware settings:
RX: 256
RX Mini: 0
RX Jumbo: 0
TX: 256

To find out how much buffer is sufficient we can apply the burst-tolerance equation:

fill_rate = NIC_line_speed - max_measured_throughput
fill_time = rx_buffer_size * 1518 * 8 / fill_rate
MBS = fill_time * NIC_line_speed

Note: It is not always easy to obtain max_measured_throughput, and in a busy workstation it can be
subject to variable delay.

As a rule-of-thumb we need to at least accommodate one max-burst (one LiDAR packet) from the
sensor. Assuming a 40KB LiDAR packet that’s 40KB/1518=27 frames. So 256 should be more than
adequate.

However, even with the default buffer of 256, user can observe packet loss due to DMA errors. This
is because the work-station is not a real-time system and the delay can be quite variable. Linux uses
a technique called interrupt coalescence that determines how often it will service the driver, when it
gets very busy.

Interrupt coalescence is controlled by the kernel filesystem key:

/proc/sys/net/core/netdev_budget_usecs and by default it's 8000us!

On a 10G interface like Bane that’s .008 * 10G / (1518 * 8) = 6588 frames

If the problem is not resolved by increasing the buffer size, it’s possible to reduce net-
dev_budget_usecs in order to favor moving data over other activities that the system could be doing.
It’s also possible to increase the maximum number of frames the OS is willing to process when the line
interface does get serviced which is controlled by:

/proc/sys/net/core/netdev_budget

Note: On some systems the user need to make the rx-ring-buffer quite large or disable interrupt
coalescence all together.

In addition to the “soft” interrupt coalescence that is found under /proc/sys/net/core the NIC itself
will delay the hardware interrupt. User can find the settings with ethtool in the usual way. Here is an
example that shows the ACQ107’s default settings:

176

ethtool -c enp4s0
Coalesce parameters for enp4s0:
Adaptive RX: off
TX: off
stats-block-usecs: 0
sample-interval: 0
pkt-rate-low: 0
pkt-rate-high: 0
rx-usecs: 112
rx-frames: 0
rx-usecs-irq: 0
rx-frames-irq: 0
tx-usecs: 510
tx-frames: 0
tx-usecs-irq: 0
tx-frames-irq: 0
rx-usecs-low: 0
rx-frames-low: 0
tx-usecs-low: 0
tx-frames-low: 0
rx-usecs-high: 0
rx-frames-high: 0
tx-usecs-high: 0
tx-frames-high: 0

Another useful parameter is the /proc/sys/net/core/netdev_max_backlog. The backlog queue, is a
FIFO on the other side of the NIC ring-buffer. Increasing the backlog buffer is one more way to add
capacity earlier in the data-path. It’s difficult to determine when to increase netdev_max_backlog vs
increasing the rx ring-buffer. Certainly the ring-buffer is the only place where we can add capacity
that can absorb traffic bursts at line rate.

Troubleshooting Advanced NICs

Advanced hardware interfaces have multiple ring-buffers that are typically mapped to different CPU
cores (a technique known as RSS.) Each NIC has its own proprietary scheme for mapping input traffic
flows to ring-buffers, and sometimes a NIC will incorrectly split a traffic flow into multiple FIFOs. If
you see this behavior it means that the NIC itself will cause frames to be reordered in a way that will
horribly disrupt the IP stack above it. The ACQ107 is one such NIC. The problem can be identified by
looking at ethtool -S <ethX>. The NIC will list stats for each FIFO, and by sending a single large traffic
flow we can see that device errantly split the flow into all of the different FIFOs. Below you can see
that this NIC has stats labeled Queue[0] … Queue[7].

Example:

ethtool -S enp4s0
NIC statistics:
InPackets: 350287807
InUCast: 350048688
InMCast: 231724
InBCast: 7395
InErrors: 0
OutPackets: 363162007
OutUCast: 363160208

(continues on next page)

177

(continued from previous page)

OutMCast: 1306
OutBCast: 493
InUCastOctets: 525223100117
OutUCastOctets: 545214487081
InMCastOctets: 16440320
OutMCastOctets: 206101
InBCastOctets: 1316312
OutBCastOctets: 58497
InOctets: 525240856749
OutOctets: 545214751679
InPacketsDma: 23207849
OutPacketsDma: 22064728
InOctetsDma: 34568308793
OutOctetsDma: 33164524696
InDroppedDma: 2002075
Queue[0] InPackets: 23087183
Queue[0] InJumboPackets: 0
Queue[0] InLroPackets: 0
Queue[0] InErrors: 0
Queue[0] AllocFails: 0
Queue[0] SkbAllocFails: 0
Queue[0] Polls: 7373190
Queue[0] OutPackets: 649028
Queue[0] Restarts: 0
Queue[1] InPackets: 80
Queue[1] InJumboPackets: 0
Queue[1] InLroPackets: 0
Queue[1] InErrors: 0
Queue[1] AllocFails: 0
Queue[1] SkbAllocFails: 0
Queue[1] Polls: 14672
Queue[1] OutPackets: 1651541
Queue[1] Restarts: 0
Queue[2] InPackets: 103
Queue[2] InJumboPackets: 0
Queue[2] InLroPackets: 0
Queue[2] InErrors: 0
Queue[2] AllocFails: 0
Queue[2] SkbAllocFails: 0
Queue[2] Polls: 215484
Queue[2] OutPackets: 3815296
Queue[2] Restarts: 0
Queue[3] InPackets: 269
Queue[3] InJumboPackets: 0
Queue[3] InLroPackets: 0
Queue[3] InErrors: 0
Queue[3] AllocFails: 0
Queue[3] SkbAllocFails: 0
Queue[3] Polls: 14469
Queue[3] OutPackets: 1580307
Queue[3] Restarts: 0
Queue[4] InPackets: 119681
Queue[4] InJumboPackets: 0
Queue[4] InLroPackets: 0

(continues on next page)

178

(continued from previous page)

Queue[4] InErrors: 0
Queue[4] AllocFails: 0
Queue[4] SkbAllocFails: 0
Queue[4] Polls: 157920
Queue[4] OutPackets: 3670607
Queue[4] Restarts: 0
Queue[5] InPackets: 83
Queue[5] InJumboPackets: 0
Queue[5] InLroPackets: 0
Queue[5] InErrors: 0
Queue[5] AllocFails: 0
Queue[5] SkbAllocFails: 0
Queue[5] Polls: 9006
Queue[5] OutPackets: 931971
Queue[5] Restarts: 0
Queue[6] InPackets: 407
Queue[6] InJumboPackets: 0
Queue[6] InLroPackets: 0
Queue[6] InErrors: 0
Queue[6] AllocFails: 0
Queue[6] SkbAllocFails: 0
Queue[6] Polls: 15387
Queue[6] OutPackets: 1636793
Queue[6] Restarts: 0
Queue[7] InPackets: 43
Queue[7] InJumboPackets: 0
Queue[7] InLroPackets: 0
Queue[7] InErrors: 0
Queue[7] AllocFails: 0
Queue[7] SkbAllocFails: 0
Queue[7] Polls: 11584
Queue[7] OutPackets: 343508
Queue[7] Restarts: 0
PTP Queue[16] InPackets: 0
PTP Queue[16] InJumboPackets: 0
PTP Queue[16] InLroPackets: 0
PTP Queue[16] InErrors: 0
PTP Queue[16] AllocFails: 0
PTP Queue[16] SkbAllocFails: 0
PTP Queue[16] Polls: 0
PTP Queue[16] OutPackets: 0
PTP Queue[16] Restarts: 0
PTP Queue[31] InPackets: 0
PTP Queue[31] InJumboPackets: 0
PTP Queue[31] InLroPackets: 0
PTP Queue[31] InErrors: 0
PTP Queue[31] AllocFails: 0
PTP Queue[31] SkbAllocFails: 0
PTP Queue[31] Polls: 0
MACSec InCtlPackets: 0
MACSec InTaggedMissPackets: 0
MACSec InUntaggedMissPackets: 23252064
MACSec InNotagPackets: 23252064
MACSec InUntaggedPackets: 0

(continues on next page)

179

(continued from previous page)

MACSec InBadTagPackets: 0
MACSec InNoSciPackets: 0
MACSec InUnknownSciPackets: 0
MACSec InCtrlPortPassPackets: 0
MACSec InUnctrlPortPassPackets: 23252064
MACSec InCtrlPortFailPackets: 0
MACSec InUnctrlPortFailPackets: 0
MACSec InTooLongPackets: 0
MACSec InIgpocCtlPackets: 0
MACSec InEccErrorPackets: 0
MACSec InUnctrlHitDropRedir: 0
MACSec OutCtlPackets: 1
MACSec OutUnknownSaPackets: 22064727
MACSec OutUntaggedPackets: 0
MACSec OutTooLong: 0
MACSec OutEccErrorPackets: 0
MACSec OutUnctrlHitDropRedir: 0

The vendor provided a workaround in their README.

Note: RSS for UDP

Currently, NIC does not support RSS for fragmented IP packets, which leads to an incorrect handling
of RSS for fragmented UDP traffic. To disable RSS for UDP one can use the following RX Flow L3/L4
rule: ethtool -N eth0 flow-type udp4 action 0 loc 32

When Stats Fail

Sometimes a NIC will drop frames without any error stats incrementing. When this happens, the issue
can be detected by inserting a managed L2 switch in between the sensor and the workstation. The
managed switch will report receive and transmit stats, which can be correlated against the rx stats of
the NIC to determine that the NIC has dropped frames without incrementing any stat.

18.7.2 IP Statistics

After the link layer the next layer up is IP. IP errors can be identified with the netstat tool:

netstat -s

This tool will output a lot of information, but in this document we will focus on only the IP section.

In this report you can see that there are a few different error categories, and you have to review care-
fully through all of the text to find them:

Let’s look at each class of error and consider it’s implications:

Packets received with invalid address means that they were sent to our MAC, but with an incor-
rect source IP.

Packets dropped because of missing route indicates that the packet was sent to the correct IP

180

https://github.com/Aquantia/AQtion/blob/master/README.txt

address but no client program was listening on the destination port.

Fragments dropped after timeoutmeans that we received some data but subsequent data didn’t
arrive in time to be processed.

Fragments reassemblies failed means that some data was missing due to an Ethernet frame
being aborted by the stack or being lost in transit and the IP layer was not able to reassemble a
complete datagram.

Debugging a Layer 3 Issue

The best way to debug issues in the IP layer is to find them in the link layer, because generally speaking
layer-2 issues are caused by layer-3 bugs, but this is not always the case.

For instance, packets received with invalid address are probably indicative of stale ARP table entries
or some other external network bug or temporal state that will most likely clear up on its own. This
sort of problem is probably not worth debugging unless its persistent. Packets dropped because of
missing route is more indicative of an issue at the application layer (the client or server simply wasn’t
listening when the packets arrived).

If a problem is detectable by L3 and not by L2, then its most likely a problem in the NIC itself, and if
the NIC isn’t providing a FIFO or DMA stat that explains it. One possibility is packet reordering by the
NIC. This can be detected by modifying

/proc/sys/net/ipv4/ipfrag_max_dist

This kernel attribute determines the systems tolerance to receiving out-of-order IPv4 frames. Nom-
inally L2 networks do not reorder packets, so you should be able to configure a value of 1 and not
observe a change in behavior. However, if setting a low threshold exacerbates the issue, or setting a
high value makes the problem less severe then the NIC is most likely to blame.

18.7.3 Useful network debugging tools

iPerf

iPerf is a useful tool when debugging the performance of a network. It can be used to quickly validate
whether or not a system can handle a given throughput. It can be configured to output a stream of
data in a variety of formats tomimic the expected load on the systemduring use. Formore information
refer to iPerf documentation.

How to use iPerf to debug sensor network issues

iPerf can be used to rule out sensor failures, and quickly reproduce errors that occur when the network
is under a high-traffic load. iPerf must be used from two machines:

Server (receiving data)

Client (sending data)

Both the server and client will measure the number of packets sent/received, and report a percentage
of packets lost.

Example usage of iPerf to test sender can send 300Mbps of UDP packets of 20KB to receiver:

181

https://iperf.fr/iperf-doc.php

Receiver arguments

--server : Required to indicate that this is the machine that will be RECEIVING data.

--port 5300 : Specify the port at which to listen for incoming data. Useful if testing with multiple
sources simultaneously.

Sender arguments

--client 192.168.88.248 : The IP address to send data to. Must be the IP address or hostname
of the receiver.

--port 5300 : The port to send data to. This must match the –port argument provided by the
receiver.

--udp : Indicates that UDP traffic will be sent. If not supplied, TCP data will be sent.

--bitrate 300M : The rate in (in bits per second) to send data to the receiver. This can be used to
simulate different amounts of network load.This supports a suffix such as K , M , or G to indicate
Kbps, Mbps, or Gbps instead of bps.

--length 20K

18.8 Updating Firmware

Sensor firmware can be updated with an Ouster-provided firmware file from Ouster FW (or di-
rectly from the deployment engineering team) by accessing the sensor over http - e.g., http://
os991900123456.local/ and uploading the file as prompted.

Figure 18.1: Uploading a new firmware image onto the sensor

Always check your firmware version before attempting an update. Only update to an equal or higher
version number.

182

http://os991900123456.local/
http://os991900123456.local/

After the web UI confirms that the update is complete, please allow the sensor to reboot (about 2
minutes) and refresh your webpage to get access to the updated Web UI.

18.9 Downgrading Firmware

Do not roll back firmware to lower numbered versions without having been instructed to do so by
Ouster. If you do, your sensor may experience issues. If your sensor is experiencing startup issues
upon downgrading from v2.3.x, reset the on-sensor configuration by using the Reset Configuration
button on Sensor Homepage.

Figure 18.2: Reset Configuration

183

	Important Safety Information
	Safety & Legal Notices
	Proper Assembly, Maintenance and Safe Use
	Assemblage correct et utilisation sûre

	Firmware Introduction
	Connecting to Sensor
	What’s in the box
	Sensor Setup
	Network Configuration
	Web Interface

	Updating Firmware
	Software Resources

	Sensor Data
	Coordinate Frames and XYZ Calculation
	Lidar Coordinate Frame
	Lidar Range to XYZ
	Sensor Coordinate Frame
	Combining Lidar and Sensor Coordinate Frame
	Lidar Intrinsic Beam Angles
	Lidar Range Data To Sensor XYZ Coordinate Frame
	IMU Data To Sensor XYZ Coordinate Frame

	Lidar Data Packet Format
	Configurable Data Packet Format
	Lidar Data Format
	Channel Data Profiles
	Single Return Profile
	Low Data Rate Profile
	Dual Return Profile
	Packet Size Calculation (Configurable)

	LEGACY Data Packet Format
	Lidar Data Format
	Packet Size Calculation (LEGACY)

	Calibrated Reflectivity
	Reflectivity Data Mapping

	IMU Data Format

	Sensor Operations
	Typical Sensor Operation
	Sensor Telemetry
	Cold Start
	Hardware Requirements
	Cold Start Operation
	Indications and Alerts

	Azimuth Window
	Expected Sensor Behavior
	Azimuth Window Examples

	Standby Operating Mode
	Expected Sensor Behavior
	Standby Operating Mode Examples

	Signal Multiplier
	Use
	Expected Behavior
	Examples

	Sensor Performance by Operating Configuration
	Estimated range multiplier
	Estimated precision multiplier

	Multi-Sensor Synchronization
	Phase Lock
	Phase Locking Reference Frame
	Phase Locking Commands
	Multi-sensor Example
	Accuracy
	Phase Locking Alerts

	Inter-sensor Interference Mitigation
	Two Sensor Example

	Time Synchronization
	Timing Overview Diagram
	Sensor Time Source
	Setting Ouster Sensor Time Source
	External Trigger Clock Source

	NMEA Message Format
	Example 1 Message:
	Example 2 Message:

	GPS/GNSS Synchronization Guide
	Configuring the Ouster Sensor
	Checking for Sync

	TCP API Guide
	Querying Sensor Info and Intrinsic Calibration
	Querying Active or Staged Parameters
	Setting Configuration Parameters

	HTTP API Reference Guide
	Sensor Metadata
	GET /api/v1/sensor/metadata/sensor_info
	GET /api/v1/sensor/metadata/lidar_data_format
	GET /api/v1/sensor/metadata/beam_intrinsics
	GET /api/v1/sensor/metadata/imu_intrinsics
	GET /api/v1/sensor/metadata/lidar_intrinsics
	GET /api/v1/sensor/metadata/calibration_status
	GET /api/v1/sensor/metadata

	System
	GET /api/v1/system/firmware
	GET /api/v1/system/network
	GET /api/v1/system/network/ipv4
	GET /api/v1/system/network/ipv4/override
	PUT /api/v1/system/network/ipv4/override
	DELETE /api/v1/system/network/ipv4/override

	Time
	GET /api/v1/time
	GET /api/v1/time/sensor
	GET /api/v1/time/system
	GET /api/v1/time/ptp
	GET /api/v1/time/ptp/profile
	PUT /api/v1/time/ptp/profile

	Alerts, Diagnostics and Telemetry
	GET /api/v1/sensor/alerts
	GET /api/v1/diagnostics/dump
	GET /api/v1/sensor/telemetry

	API Changelog
	Troubleshooting
	Sensor Homepage and HTTP Server
	Networking
	Get Alerts
	Using Latest Firmware

	Alerts and Errors
	Table of All Alerts and Errors

	Networking Guide
	Networking Terminology
	Windows
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	macOS
	Connecting the Sensor
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor

	Linux
	Connecting the Sensor
	Setting the Interface to Link-Local Only
	The Sensor Homepage
	Determining the IPv4 Address of the Sensor
	Determining the IPv4 Address of the Interface
	Setting the Host Interface to DHCP
	Setting the Host Interface to Static IP
	Finding a Sensor with mDNS Service Discovery

	Firmware Changelog
	Appendix
	Features / Releases Support Table
	Lidar Packet Format Update
	Lidar format update appearing in v2.2.0
	PTP Profiles Guide
	PTP Profiles
	PTP HTTP API
	Enabling the PTP profiles
	Example using cURL
	Example using Httpie
	Sync Verification

	PTP Quickstart Guide
	Assumptions
	Physical Network Setup
	Third Party Grandmaster Clock
	Linux PTP Grandmaster Clock
	Example Network Setup
	Installing Necessary Packages
	Ethernet Hardware Timestamp Verification
	Configurations
	Verifying Operation

	Sensor PTP Sync Verification
	LinuxPTP PMC Tool
	Tested Grandmaster Clocks

	Analyzing Linux Networking Issues
	Link Layer Statistics and Configuration
	IP Statistics
	Useful network debugging tools

	Updating Firmware
	Downgrading Firmware

